scholarly journals Numerical study of natural convection in an enclosure with discrete heat sources on one of its vertical walls

2019 ◽  
pp. 448-448
Author(s):  
Mehmet Pamuk

In this study, natural convection in a fluid-filled rectangular enclosure is analyzed using Comsol? commercial software. The fluid in which natural convection takes place is a dielectric liquid called FC-75. Attached to one of the vertical walls of the enclosure is an array of rectangular protrusions, each representing computer chips mounted on a PCB. The nominal power consumed by each chip is assumed to be 0.35W, 1.07W, 1.65W and 2.35W. This corresponds exactly to the values used in the experiments, which were performed once by the author of this study. The results of the experiment and the numerical study are shown as Nusselt numbers vs. Rayleigh numbers, both being the most important dimensionless parameters of natural convection. A comparison of the results has shown that Comsol? can achieve reliable results in similar problems, eliminating the need to build expensive experimental setups and spending time conducting experiments. The simulation results are aimed to be used in similar designs of electronic circuits in confined spaces.

Author(s):  
G. A. Sheikhzadeh ◽  
M. Pirmohammadi ◽  
M. Ghassemi

Numerical study natural convection heat transfer inside a differentially heated square cavity with adiabatic horizontal walls and vertical isothermal walls is investigated. Two perfectly conductive thin fins are attached to the isothermal walls. To solve the governing differential mass, momentum and energy equations a finite volume code based on Pantenkar’s simpler method is developed and utilized. The results are presented in form of streamlines, isotherms as well as Nusselt number for Rayleigh number ranging from 104 up to 107. It is shown that the mean Nusselt number is affected by the position of the fins and length of the fins as well as the Rayleigh number. It is also observed that maximum Nusselt number occurs about the middle of the enclosure where Lf is grater the 0.5. In addition the Nusselt number stays constant and does not varies with width of the cavity (lf) when Lf is equal to 0.5 and Rayleigh number is equal to 104 and 107 as well as when Lf is equal to 0.6 and low Rayleigh numbers.


2004 ◽  
Vol 126 (1) ◽  
pp. 76-83 ◽  
Author(s):  
G. Desrayaud ◽  
G. Lauriat

A numerical study of natural convection generated by a cold vertical wall of an enclosure with two openings on the opposite wall of finite thickness is presented. The enclosure is connected to an infinite reservoir filled with hot air. A two-dimensional laminar flow is assumed both within the enclosure and along the side of the bounding wall immersed into the reservoir. The effects of the size of the openings, spacing between the vertical walls and thermal resistance of the bounding wall are investigated. Numerical results are discussed for aspect ratios of the enclosure and Rayleigh numbers relevant to practical applications.


1998 ◽  
Vol 120 (1) ◽  
pp. 73-81 ◽  
Author(s):  
M. Behnia ◽  
A. A. Dehghan ◽  
H. Mishima ◽  
W. Nakayama

Natural convection immersion cooling of discrete heat sources in a series of parallel interacting open-top cavities filled with a fluorinert liquid (FC–72) has been numerically studied. A series of open-top slots which are confined by conductive vertical walls with two heat sources on one side are considered. One of the slots is modeled and simulated. The effect of the separation between the heat sources on the flow and heat transfer characteristics of the wall and the effect of strength of the lower heat source (which location is upstream of the other one) on the flow and heat transfer of the upper heat source are considered. The wall thermal conductivity considered ranges from adiabatic to alumina-ceramic. The results of bakelite and alumina-ceramic are shown, which are commonly used as wiring boards in electronic equipment. It is found that conduction in the wall is very important and enhances the heat transfer performance.


2002 ◽  
Vol 124 (3) ◽  
pp. 441-451 ◽  
Author(s):  
Oronzio Manca ◽  
Sergio Nardini ◽  
Vincenzo Naso

An experimental study on air natural convection on an inclined discretely heated plate with a parallel shroud below was carried out. Three heated strips were located in different positions on the upper wall. The distance between the walls, b, was changed in the range 7.0–40.0 mm and two values of the heat flux dissipated by the heaters were taken into account. Several inclination angles between the vertical and the horizontal were tested. The wall temperature distribution as a function of the channel spacing and the inclination angle, the source heat flux, the number and the arrangement of the heat sources are presented. The analysis shows that, for angles not greater than 85 deg, increasing the distance between walls does not reduce the wall temperatures, whereas at greater tilting angles (>85 deg) there is an opposite tendency. This is confirmed by flow visualization at angles equal to 85 deg and 90 deg and b=20.0 and 32.3 mm. Dimensionless maximum wall temperatures are correlated to the process parameters in the ranges 1.2s˙104⩽Ral cos θ⩽8.6s˙105; 0 deg⩽θ⩽88 deg; 0.48⩽l/b⩽1.6 and 10⩽L/b⩽32.6 with 1.0⩽d/l⩽3.0; the agreement with experimental data is good. The spacing which yields the best thermal performance of the channel is given. Local Nusselt numbers are evaluated and correlated to the local Rayleigh numbers and the tilting angles in the ranges 20⩽Rax′⩽8.0s˙105 and 0 deg⩽θ⩽88 deg. The exponent of monomial correlations between local Nusselt and Rayleigh numbers are in the 0.23–0.26 range. Comparisons with data from the literature, in terms of Nusselt number, exhibited minor discrepancies, mainly because of some difference in test conditions and of heat conduction in the channel walls.


2014 ◽  
Vol 18 (4) ◽  
pp. 1133-1144 ◽  
Author(s):  
Osameh Ghazian ◽  
Hossein Rezvantalab ◽  
Mehdi Ashjaee

Natural convection heat transfer in a partially partitioned enclosure has been investigated experimentally using Mach-Zehnder Interferometry technique. The top and bottom of the enclosure are insulated while one of the vertical walls is heated isothermally. The partitions are made of wood fiber and are attached to the heated wall with angles changing from 30? to 150? in different experiments. The length of each partition is equal to the width of the enclosure, therefore dividing the enclosure to isolated cells only at 90?. At other angles the cells are interconnected near the cold wall. Rayleigh number based on the enclosure width is changed from 3500 to 32000. Results for the local and the average Nusselt numbers at the heated wall of the enclosure are presented and discussed for various partition angles and Rayleigh numbers. It is found that, at each Rayleigh number, there exists an optimum inclination angle which minimizes the average Nusselt number.


Author(s):  
M. Lacroix

A numerical study has been conducted for natural convection heat transfer for air around two horizontal heated cylinders placed inside a rectangular enclosure cooled from the side. Three cylinder spacings were investigated. The local and overall Nusselt numbers were determined over the range of Rayleigh numbers from 104 to 106. It is found that the thermal performance of the unit is strongly influenced by the Rayleigh number and, to a lesser extent, by the cylinder spacing. A correlation is suggested for the overall Nusselt number.


Sign in / Sign up

Export Citation Format

Share Document