Comment on ''Base pressure measurements on sharp and blunt 9 deg cones at Mach numbers from 3.50 to 9.20.''

AIAA Journal ◽  
1966 ◽  
Vol 4 (12) ◽  
pp. 2254-2254 ◽  
Author(s):  
JACK D. WHITFIELD ◽  
J. LEITH POTTER
1967 ◽  
Vol 18 (3) ◽  
pp. 298-307 ◽  
Author(s):  
W. Stahl ◽  
H. Grauer-Carstensen

SummaryAt the Aerodynamische Versuchsanstalt Gottingen (AVA), base pressure measurements were made on five elliptic cones. The ratios of the axes of the ellipses were: 1:12, 1:3, 1:1, 3:1, and 12:1. All the cones had the same volume and the same length. The investigations were carried out for Mach numbers M∞=1·50, 1·73, and 1·98 at angles of incidence between about —2 degrees and about 8 degrees. Reynolds numbers, based on a mean length, lm, varied from 2·5×106 to 3·0×106; the boundary layer approaching the base was turbulent. The base pressure coefficients are given as a function of geometry. Some of the results were compared with the base-flow theory of Korst and reasonable agreement was found.


2019 ◽  
Author(s):  
J. N. Murugan ◽  
Kiran Chutkey ◽  
S. B. Verma

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Fangyuan Lou ◽  
John Charles Fabian ◽  
Nicole Leanne Key

This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc) from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.


1968 ◽  
Vol 72 (696) ◽  
pp. 1058 ◽  
Author(s):  
W. A. Mair

Calvert has considered alternative methods of estimating the blockage corrections for blunt-based bodies of revolution in closed wind tunnels at low Mach numbers. His models were all of maximum diameter 152 mm, with an ellipsoidal nose section 203 mm long followed by a cylindrical afterbody. The ratio of overall length L to maximum diameter d varied from about 1.5 to 5.5. For each model the base pressure was measured in wind tunnels of two different sizes, so that the blockage correction factor e for the smaller tunnel could be derived for each model from the experimental results. These experimental values of e were compared with alternative theoretical estimates, using the methods given by Evans, Maskell and Pank-hurst and Holder.


Sign in / Sign up

Export Citation Format

Share Document