Influence of longitudinal wall curvature on the stability of boundary-layer flow.

AIAA Journal ◽  
1967 ◽  
Vol 5 (11) ◽  
pp. 2053-2054 ◽  
Author(s):  
F. SCHULTZ-GRUNOW
1988 ◽  
Vol 196 ◽  
pp. 359-408 ◽  
Author(s):  
K. S. Yeo

In this paper, we are concerned with the linear stability of zero pressure-gradient laminar boundary-layer flow over compliant walls which are composed of one or more layers of isotropic viscoelastic materials and backed by a rigid base. Wall compliance supports a whole host of new instabilities in addition to the Tollmien-Schlichting mode of instability, which originally exists even when the wall is rigid. The perturbations in the flow and the compliant wall are coupled at their common interface through the kinematic condition of velocity continuity and the dynamical condition of stress continuity. The disturbance modes in the flow are governed by the Orr-Sommerfeld equation using the locally-parallel flow assumption, and the response of the compliant layers is described using a displacement-stress formalism. The theoretical treatment provides a unified formulation of the stability eigenvalue problem that is applicable to compliant walls having any finite number of uniform layers; inclusive of viscous sublayer. The formulation is well suited to systematic numerical implementation. Results for single- and multi-layer walls are presented. Analyses of the eigenfunctions give an insight into some of the physics involved. Multi-layering gives a measure of control over the stability characteristics of compliant walls not available to single-layer walls. The present study provides evidence which suggests that substantial suppression of disturbance growth may be possible for suitably tailored compliant walls.


2014 ◽  
Vol 755 ◽  
pp. 274-293 ◽  
Author(s):  
Z. Hussain ◽  
S. J. Garrett ◽  
S. O. Stephen

AbstractExisting experimental and theoretical studies are discussed which lead to the clear hypothesis of a hitherto unidentified convective instability mode that dominates within the boundary-layer flow over slender rotating cones. The mode manifests as Görtler-type counter-rotating spiral vortices, indicative of a centrifugal mechanism. Although a formulation consistent with the classic rotating-disk problem has been successful in predicting the stability characteristics over broad cones, it is unable to identify such a centrifugal mode as the half-angle is reduced. An alternative formulation is developed and the governing equations solved using both short-wavelength asymptotic and numerical approaches to independently identify the centrifugal mode.


1963 ◽  
Vol 15 (4) ◽  
pp. 560-576 ◽  
Author(s):  
Alan J. Faller

This study concerns the stability of the steady laminar boundary-layer flow of a homogeneous fluid which occurs in a rotating system when the relative flow is slow compared to the basic speed of rotation. Such a flow is called an Ekman boundary-layer flow after V. W. Ekman who considered the theory of such flows with application to the wind-induced drift of the surface waters of the ocean.Ekman flow was produced in a large cylindrical rotating tank by withdrawing water from the centre and introducing it at the rim. This created a steady-state symmetrical vortex in which the flow from the rim to the centre took place entirely in the shallow viscous boundary layer at the bottom. This boundary-layer flow became unstable above the critical Reynolds number$Re_c = vD|v = 125 \pm 5$wherevis the tangential speed of flow,$D = (v| \Omega)^{\frac {1}{2}}$is the characteristic depth of the boundary layer,vis the kinematic viscosity, and Ω is the basic speed of rotation. The initial instability was similar to that which occurs in the boundary layer on a rotating disk, having a banded form with a characteristic angle to the basic flow and with the band spacing proportional to the depth of the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document