characteristic angle
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 922 (1) ◽  
pp. 22
Author(s):  
Xiao-Yan Li ◽  
Da-Bin Lin ◽  
Jia Ren ◽  
Shu-Jin Hou ◽  
Yu-Fei Li ◽  
...  

Abstract A number of gamma-ray bursts (GRBs) exhibit the simultaneous bumps in their optical and X-ray afterglows around the jet break. These bumps are similar to the afterglows of GRB 170817A, except preceded by a long shallow decay. Its origin is unclear. We suggest that these late simultaneous bumps may sound a transition of circumburst environment from a free-wind medium to a constant density medium, e.g., the shocked-wind medium. In this paper, we study the emission of an external-forward shock propagating in a free-to-shocked wind environment at different viewing angles. The late simultaneous bumps/plateaux followed by a steep decay are found in the optical and X-ray afterglows for high-viewing-angle observers. In addition, these theoretical bumps are preceded by a long plateau or shallow decay, which is formed during the external-forward shock propagating in the free-wind environment. For low-viewing-angle observers, the above bumps also appear but only in the situation where the structured jet has a low characteristic angle and the deceleration radius of the in-core jet flow is at around or beyond the free-wind boundary. We search GRBs for afterglows with the late simultaneous optical and X-ray bumps followed by a steep decay. GRBs 120326A, 100901A, 100814A, and 120404A are obtained. We find that an off-core (in-core) observed external-forward shock in a free-to-shocked wind environment can well explain the optical and X-ray afterglows in GRBs 120326A, 100901A, and 100814A (GRB 120404A).


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Dongjie Zhang ◽  
Fei Luo ◽  
Zhanyuan Zhu ◽  
Jiaming Liu ◽  
Jing Li ◽  
...  

To investigate the strength and deformation characteristics of gravelly sand on the Qinghai-Tibet Plateau under different stress paths, a series of triaxial shear tests was conducted under confining pressures of 50–400 kPa in four types of stress path conditions of conventional triaxial compression (CTC) (drained and undrained), triaxial compression (TC), and reduced triaxial compression (RTC). We can see from the test results that gravelly sand samples show strain hardening and shear contraction under the CTC (drained), TC, and RTC during the shearing process but exhibit strain softening under the CTC (undrained). To explore the microscopic deformation mechanism of gravelly sand, a characteristic angle θ was defined to reflect the relative movement of soil particles. The relationship between principal stress ratio σ1/σ3 and characteristic angle θ and that between void ratio e and characteristic angle θ were derived. Subsequently, the relationship expression of stress ratio η (q/p) and void ratio e was established, and the trend of void ratio e with the stress path was studied. To describe the strain hardening and strain softening characteristics of gravelly sand in different stress paths, a new dilatancy equation was obtained by introducing the characteristic state stress ratio Mc into the dilatancy equation of the modified Cam-Clay model based on the state-dependent dilatancy theory. Finally, an elastoplastic constitutive model of gravelly sand was established by applying a nonassociate flow rule. All model parameters can be determined by triaxial shear tests under different stress paths, and the comparison results show that the proposed model can well reflect the mechanical behaviors of gravelly sand under different stress paths.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4249
Author(s):  
Cristina Favieres ◽  
José Vergara ◽  
Vicente Madurga

Charged magnetic domain walls have been visualized in soft magnetic nanostructured Fe thin films under both static and dynamic conditions. A transition in the core of these zigzagged magnetic walls from Néel-type to Bloch-type through the formation of crosstie walls has been observed. This transition in charged zigzagged walls was not previously shown experimentally in Fe thin films. For film thicknesses t < 30 nm, Néel-type cores are present, while at t ≈ 33 nm, walls with crosstie cores are observed. At t > 60 nm, Bloch-type cores are observed. Along with the visualization of these critical parameters, the dependence on the film thickness of the characteristic angle and length of the segments of the zigzagged walls has been observed and analyzed. After measuring the bistable magneto-optical behavior, the values of the wall nucleation magnetic field and the surface roughness of the films, an energetic fit to these nucleation values is presented.


2020 ◽  
Vol 220 ◽  
pp. 01060
Author(s):  
Anna Kapranova ◽  
Daria Bahaeva ◽  
Dmitry Stenko ◽  
Alexander Vatagin ◽  
Anton Lebedev ◽  
...  

The purpose of this study is a stochastic description of the distribution of solid dispersed components, including those from secondary raw materials, according to the characteristic angle of scattering ϴij when receiving a construction mixture at the first stage of operation of the rotary apparatus. Two stages of the formation of rarefied flows are assumed: when scattering particles of components by elastic blades of a rotating drum and when interacting with the baffle surface. Modeling method this is energy method of Klimontovich Yu.L. The analysis of the efficiency of the first stage (rotary mixing) is carried out based on the obtained distribution functions of the number of particles of bulk components over the scattering angle, taking into account their physical and mechanical properties and a variety of design and operating parameters of the apparatus. The bulk of the particles of the mixed components are scattered at the initial angles of rotation of the mixing drum, when the deformation of the elastic blades is most significant. This is accompanied by the characteristic first bursts of the obtained distribution curves (ϴij< 0.1 rad) for the number of particles of the tested bulk materials at the given ranges of parameters.


2019 ◽  
Vol 29 (3) ◽  
pp. 753-762
Author(s):  
Ji’ang Han ◽  
Jian Guan ◽  
Jingjun Zhong ◽  
Luting Chen

Author(s):  
A Budai ◽  
P Raffai ◽  
B Borgulya ◽  
B A Dawes ◽  
G Szeifert ◽  
...  

Abstract We propose a method to detect possible non-stationarities of gamma-ray burst jets. Assuming that the dominant source of variability in the prompt gamma light curve is the non-stationarity of the jet, we show that there should be a connection between the variability measure and the characteristic angle of the jet derived from the jet break time of the afterglow. We carried out Monte Carlo simulations of long gamma-ray burst observations assuming three radial luminosity density profiles for jets and randomizing all burst parameters, and created samples of gamma light curves by simulating jets undergoing Brownian motions with linear restoring forces. We were able to demonstrate that the connection between the variability and the characteristic angle is an anti-correlation in case of uniform and power-law jet profiles, and a correlation in case of a Gaussian profile. We have found that as low as 50 (144) gamma-ray burst observations with jet angle measurements can be sufficient for a 3σ (5σ) detection of the connection. The number of observations required for the detection depends on the underlying jet beam profile, ranging from 50 (144) to 237 (659) for the four specific profile models we tested.


MRS Advances ◽  
2019 ◽  
Vol 4 (48) ◽  
pp. 2619-2625 ◽  
Author(s):  
P. Blaise

ABSTRACT:Using ab initio simulation, we study a ferroelectric layer of a few nanometers made of hafnia (HfO2) under the influence of Si doping with TiN electrodes. We evaluate the orthorhombic phase of Pca21 symmetry, its ferroelectric switching and the incidence of doping with silicon. We show that the ferroelectric switching can involve a 90° characteristic angle with corresponding activation energy which is lowered by a factor three due to Si doping at 3% at. A full MFM (Metal-Ferroelectric-Metal) model is derived in order to simulate finite-size effects. This model is compatible with a reversal of a polar HfO2:Si with a (111) preferential orientation. Validity and usefulness of such a model are discussed for ferroelectric devices optimization.


Author(s):  
Nicola Bosso ◽  
Emanuele Conte ◽  
Aurelio Somà ◽  
Nicolò Zampieri

The article shows the study and simulation of a hydropneumatic suspension to be adopted for a telescopic handler vehicle. The hydropneumatic suspension system with independent wheels and with quadrilateral architecture has been studied to improve the comfort and the productivity of the existing vehicle, which has a suspended rigid axle on the front and a rigid axle on the rear, which limits the comfort and the grip. After the choice of the architecture and the kind of suspension, the article shows the design of the suspension kinematics. The optimization of the characteristic angle of the suspension has been performed by means of Adams/Car and Adams/Insight. The kinematic model optimized is subsequently reproduced in Adams/View to simulate the dynamics of the complete vehicle. The simulation results are used to evaluate the vehicle performances in terms of comfort and stability according to the methods proposed by the standards.


Sign in / Sign up

Export Citation Format

Share Document