viscous heating
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 44)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Lynne A. Hillenbrand ◽  
Antonio C. Rodriguez

Abstract Disks around young stellar objects (YSOs) consist of material that thermally emits the energy provided by a combination of passive heating from the central star, and active, viscous heating due to mass accretion. FU Ori stars are YSOs with substantially enhanced accretion rates in their inner disk regions. As a disk transitions from standard low-state, to FU Ori-like high-state accretion, the outburst manifests through photometric brightening over a broad range of wavelengths. We present results for the expected amplitudes of the brightening between ∼4000 Å and 8 μm—the wavelength range where FU Ori type outburst events are most commonly detected. Our model consists of an optically thick passive + active steady-state accretion disk with low and high accretion states.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7313
Author(s):  
Marcin Froissart ◽  
Tomasz Ochrymiuk

The cooling technology of hot turbine components has been a subject of continuous improvement for decades. In high-pressure turbine blades, the regions most affected by the excessive corrosion are the leading and trailing edges. In addition, high Kt regions at the hot gas path are exposed to cracking due to the low and high cycle fatigue failure modes. Especially in the case of a nozzle guide vane, the ability to predict thermally driven loads is crucial to assess its life and robustness. The difficulties in measuring thermal properties in hot conditions considerably limit the number of experimental results available in the literature. One of the most popular test cases is a NASA C3X vane, but coolant temperature is not explicitly revealed in the test report. As a result of that, numerous scientific works validated against that vane are potentially inconsistent. To address that ambiguity, the presented work was performed on a fully structural and a very fine mesh assuming room inlet temperature on every cooling channel. Special attention was paid to the options of the SST (shear-stress transport) viscosity model, such as Viscous heating (VH), Curvature correction (CC), Production Kato-Launder (KT), and Production limiter (PL). The strongest impact was from the Viscous heating, as it increases local vane temperature by as much as 40 deg. The significance of turbulent Prandtl number impact was also investigated. The default option used in the commercial CFD code is set to 0.85. Presented study modifies that value using equations proposed by Wassel/Catton and Kays/Crawford. Additionally, the comparison between four, two, and one-equation viscosity models was performed.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4094
Author(s):  
Yu-Ho Wen ◽  
Chen-Chieh Wang ◽  
Guo-Sian Cyue ◽  
Rong-Hao Kuo ◽  
Chia-Hsiang Hsu ◽  
...  

For highly viscous polymer melts, considerable fluid temperature rises produced by viscous heating can be a disturbing factor in viscosity measurements. By scrutinizing the experimental and simulated capillary pressure losses for polymeric liquids, we demonstrate the importance of applying a viscous heating correction to the shear viscosity, so as to correct for large errors introduced by the undesirable temperature rises. Specifically, on the basis of a theoretical derivation and 3-D nonisothermal flow simulation, an approach is developed for retrieving the equivalent shear viscosity in capillary rheometry, and we show that the shear viscosity can be evaluated by using the average fluid temperature at the wall, instead of the bulk temperature, as previously assumed. With the help of a viscous Cross model in analyzing the shear-dominated capillary flow, it is possible to extract the viscous heating contribution to capillary pressure loss, and the general validity of the methodology is assessed using the experiments on a series of thermoplastic melts, including polymers of amorphous, crystalline, and filler-reinforced types. The predictions of the viscous model based on the equivalent viscosity are found to be in good to excellent agreement with experimental pressure drops. For all the materials studied, a near material-independent scaling relation between the dimensionless temperature rise (Θ) and the Nahme number (Na) is found, Θ ~ Na0.72, from which the fluid temperature rise due to viscous heating as well as the resultant viscosity change can be predicted.


Sign in / Sign up

Export Citation Format

Share Document