Leading-Edge Vortices of Flapping and Rotary Wings at Low Reynolds Number

Author(s):  
Shigeru SUNADA ◽  
Akihiro OHKURA ◽  
Atsushi MATSUE ◽  
Keiji KAWACHI

Application of moving surface boundary layer control technique has been confined to relatively high Reynolds numbers. The present paper reports a numerical study of application of the above flow technique in the ultra-low Reynolds number range. A two dimensional incompressible unstructured grid based Navier Stokes solver has been used for conducting the numerical studies. Moving surface has been applied at three different portions on the airfoil surface, firstly, in the form of a rotating leading edge portion of the airfoil, secondly, a continuous moving surface from leading edge of airfoil to 57% of the chord along the leeward surface of the airfoil and thirdly a continuous moving surface from leading edge to 97% of the chord along the leeward surface of the airfoil. All the moving surface configurations show improvement of aerodynamic performance of the airfoil through enhancement of lift and decrement of drag as compared to a fixed surface one


Sign in / Sign up

Export Citation Format

Share Document