scholarly journals Moving Surface Boundary Layer Technique For NACA 0012 Airfoil At Ultra-Low Reynolds Number

Application of moving surface boundary layer control technique has been confined to relatively high Reynolds numbers. The present paper reports a numerical study of application of the above flow technique in the ultra-low Reynolds number range. A two dimensional incompressible unstructured grid based Navier Stokes solver has been used for conducting the numerical studies. Moving surface has been applied at three different portions on the airfoil surface, firstly, in the form of a rotating leading edge portion of the airfoil, secondly, a continuous moving surface from leading edge of airfoil to 57% of the chord along the leeward surface of the airfoil and thirdly a continuous moving surface from leading edge to 97% of the chord along the leeward surface of the airfoil. All the moving surface configurations show improvement of aerodynamic performance of the airfoil through enhancement of lift and decrement of drag as compared to a fixed surface one

2018 ◽  
Vol 47 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Kh Md Faisal ◽  
M A Salam ◽  
M A Taher Ali ◽  
Md. Samad Sarkar ◽  
Wasiul Safa ◽  
...  

Flow control is a significant topic of research in the field of aviation. Researchers in this field are continuously trying their best to find various flow control strategies in order to extract aerodynamic benefits by applying them. Applying moving surface at the leading edge of aerofoil is a type of strategy among the various types of active flow control strategies. In the present research work a rotating cylinder is added on the leading edge of the aerofoil as a moving surface in order to control the flow over its surface. The moving surface boundary layer control is applied to NACA 0018 airfoil for investigating its aerodynamic benefits and effectiveness. The moving surface is created by rotating a smooth cylinder at the leading edge of the aerofoil. The peripheral velocity of the cylinder injects momentum to the upper surface boundary layer of the aerofoil and thus delays its separation. This results in the gain in both the maximum lift coefficient and the stall angle. The work has been done at four different Reynolds Number i.e., at Re = 1.4 X 10^5, 1.85 X 10^5, 2.3 X 10^5, 2.8 X 10^5 at different angles of attack.


Author(s):  
Hongrui Liu ◽  
Jun Liu ◽  
Qiang Du ◽  
Guang Liu ◽  
Pei Wang

Aggressive inter-turbine duct, which has ultra-high bypass ratio and ultra-short axial length, is widely applied in the modern turbofan engine because it can reduce engine weight and improve low-pressure rotor dynamic characteristics. However, the aggressive inter-turbine duct that has swirling flow, wake, shock, and tip clearance leakage flow of upstream high-pressure turbine, and even has structs in its flow channel, is liable to separate, especially in high-altitude low Reynolds number (Re) condition. In addition, its downstream low-pressure turbine is on the edge of separation too. In this paper, an integrated aggressive inter-turbine duct embedded with wide-chord low-pressure turbine nozzle is adopted to eliminate the aggressive inter-turbine duct's end-wall separation. Since there are many studies on suppressing the blade suction surface's separation by upstream wake, in this study inherent wake is utilized to suppress the boundary layer separation on low-pressure turbine nozzle's suction surface in the integrated aggressive inter-turbine duct. The paper studies the unsteady flow mechanisms of the integrated aggressive inter-turbine duct (especially the separation and transition mechanisms of low-pressure turbine nozzle's suction surface boundary layer) by the computatioinal simulation method.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


Author(s):  
Michael J. Collison ◽  
Peter X. L. Harley ◽  
Domenico di Cugno

Low speed, small scale turbomachinery operates at low Reynolds number with transition phenomena occurring. In small consumer product applications, high efficiency and low noise are key performance metrics. Transition behaviour will partly determine the state of the boundary layer at the trailing edge; whether it is laminar, turbulent or separated impacts aerodynamic and acoustic performance. This study aimed to evaluate a commercially available CFD transition model on a low Reynolds number Eppler E387 airfoil and identify whether it was able to correctly model the boundary layer transition, and at what expense. CFD was carried out utilising the ANSYS Shear Stress Transport (SST) k-ω γ-Reθ transition model. The CFD progressed from 2D in Fluent v150, through to single cell thickness 3D (pseudo 2D) in CFX v172. An Eppler E387 low Reynolds number airfoil, for which experimental data was readily available from literature at Re = 200,000 was used as the validation case for the CFD, with results computed at numerous incidence angles and mesh densities. Additionally, experimental surface oil flow visualisation was undertaken in a wind tunnel using a scaled E387 airfoil for the zero incidence case at Re = 50,000. The flow visualisation exhibited the expected key features of transition in the breakdown of the boundary layer from laminar to turbulent, and was used as a validation case for the CFD transition model. The comparison between the results from the CFD transition model and the experimental data from literature suggested varying levels of agreement based on the mesh density and CFD solver in the starting location of the laminar separation bubble, with higher disparity for the position of the reattachment point. Whether 2D or 3D, the prediction accuracy was seen to worsen at high incidence angles. Finally, the location of the laminar separation bubble between CFD and oil flow visualisation had good agreement and a set of guidelines on the mesh parameters which can be applied to low Reynolds number turbomachinery simulations was determined.


Sign in / Sign up

Export Citation Format

Share Document