Leading Edge Serrations on Flat Plates at Low Reynolds Number

Author(s):  
Brian Cranston ◽  
Chris Laux ◽  
Aaron Altman
2021 ◽  
Author(s):  
Bastav Borah ◽  
Anand Verma ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Vortex shedding phenomenon leads to a number of different features such as flow induced vibrations, fluid mixing, heat transfer and noise generation. With respect to aerodynamic application, the intensity of vortex shedding and the size of vortices play an essential role in the generation of lift and drag forces on an airfoil. The flat plates are known to have a better lift-to-drag ratio than conventional airfoils at low Reynolds number (Re). A better understanding of the shedding behavior will help aerodynamicists to implement flat plates at low Re specific applications such as fixed-wing micro air vehicle (MAV). In the present study, the shedding of vortices in the wake of a flat plate at low incidence has been studied experimentally in a low-speed subsonic wind tunnel at a Re of 5 × 104. The velocity field in the wake of the plate is measured using a hot wire anemometer. These measurements are taken at specific points in the wake across the flow direction and above the suction side of the flat plate. The velocity field is found to oscillate with one dominant frequency of fluctuation. The Strouhal number (St), calculated from this frequency, is computed for different angles of attack (AoA). The shedding frequency of vortices from the trailing edge of the flat plate has a general tendency to increase with AoA. In this paper, the generation and subsequent shedding of leading edge and trailing edge vortices in the wake of a flat plate are discussed.


Application of moving surface boundary layer control technique has been confined to relatively high Reynolds numbers. The present paper reports a numerical study of application of the above flow technique in the ultra-low Reynolds number range. A two dimensional incompressible unstructured grid based Navier Stokes solver has been used for conducting the numerical studies. Moving surface has been applied at three different portions on the airfoil surface, firstly, in the form of a rotating leading edge portion of the airfoil, secondly, a continuous moving surface from leading edge of airfoil to 57% of the chord along the leeward surface of the airfoil and thirdly a continuous moving surface from leading edge to 97% of the chord along the leeward surface of the airfoil. All the moving surface configurations show improvement of aerodynamic performance of the airfoil through enhancement of lift and decrement of drag as compared to a fixed surface one


Author(s):  
Toyotaka Sonoda ◽  
Rainer Schnell ◽  
Toshiyuki Arima ◽  
Giles Endicott ◽  
Eberhard Nicke

In this paper, Reynolds effects on a modern transonic low-aspect-ratio fan rotor (Baseline) and the re-designed (optimized) rotor performance are presented with application to a small turbofan engine. The re-design has been done using an in-house numerical optimization system in Honda and the confirmation of the performance was carried out using DLR’s TRACE RANS stage code, assessed with respect to experimental data obtained from a small scale compressor rig in Honda. The baseline rotor performance is evaluated at two Reynolds number conditions, a high Reynolds condition (corresponding to a full engine scale size) and a low Reynolds number condition (corresponding to the small scale compressor rig size), using standard ISA conditions. The performance of the optimized rotor was evaluated at the low Reynolds number condition. The CFD results show significant discrepancies in the rotor efficiency (about 1% at cruise) between these two points due to the different Reynolds numbers. The optimized rotor’s efficiency is increased compared to the baseline. A unique negative curvature region close to the leading edge on the pressure surface of the optimized rotor is one of the reasons why the optimized rotor is superior to the baseline.


AIAA Journal ◽  
2021 ◽  
pp. 1-9
Author(s):  
Nicholas J. Kay ◽  
Peter J. Richards ◽  
Rajnish N. Sharma

Sign in / Sign up

Export Citation Format

Share Document