A SIMPLE RE-ENTRY GUIDANCE SYSTEM

Author(s):  
J. LOVE ◽  
L. NEUSTADT
1964 ◽  
pp. 931-964
Author(s):  
John A. Love ◽  
L.W. Neustadt

2020 ◽  
Vol 24 (03) ◽  
pp. 515-520
Author(s):  
Vattumilli Komal Venugopal ◽  
Alampally Naveen ◽  
Rajkumar R ◽  
Govinda K ◽  
Jolly Masih

1964 ◽  
Vol 1 (2) ◽  
pp. 191-196 ◽  
Author(s):  
HENRY C. LESSING ◽  
PHILLIPS J. TUNNELL ◽  
ROBERT E. COATE

2021 ◽  
Vol 9 (3) ◽  
pp. 277
Author(s):  
Isaac Segovia Ramírez ◽  
Pedro José Bernalte Sánchez ◽  
Mayorkinos Papaelias ◽  
Fausto Pedro García Márquez

Submarine inspections and surveys require underwater vehicles to operate in deep waters efficiently, safely and reliably. Autonomous Underwater Vehicles employing advanced navigation and control systems present several advantages. Robust control algorithms and novel improvements in positioning and navigation are needed to optimize underwater operations. This paper proposes a new general formulation of this problem together with a basic approach for the management of deep underwater operations. This approach considers the field of view and the operational requirements as a fundamental input in the development of the trajectory in the autonomous guidance system. The constraints and involved variables are also defined, providing more accurate modelling compared with traditional formulations of the positioning system. Different case studies are presented based on commercial underwater cameras/sonars, analysing the influence of the main variables in the measurement process to obtain optimal resolution results. The application of this approach in autonomous underwater operations ensures suitable data acquisition processes according to the payload installed onboard.


Sign in / Sign up

Export Citation Format

Share Document