On three-dimensional laminar boundary layers with large cross-flow

1969 ◽  
Author(s):  
G. MILLER
1974 ◽  
Vol 66 (4) ◽  
pp. 641-655 ◽  
Author(s):  
J. H. Horlock ◽  
A. K. Lewkowicz ◽  
J. Wordsworth

Two attempts were made to develop a three-dimensional laminar boundary layer in the flow over a flat plate in a curved duct, establishing a negligible streamwise pressure gradient and, at the same time, an appreciable crosswise pressure gradient.A first series of measurements was undertaken keeping the free-stream velocity at about 30 ft/s; the boundary layer was expected to be laminar, but appears to have been transitional. As was to be expected, the cross-flow in the boundary layer decreased gradually as the flow became progressively more turbulent.In a second experiment, at a lower free-stream velocity of approximately 10 ft/s, the boundary layer was laminar. Its streamwise profile resembled closely the Blasius form, but the cross-flow near the edge of the boundary layer appears to have exceeded that predicted theoretically. However, there was a substantial experimental scatter in the measurements of the yaw angle, which in laminar boundary layers is difficult to obtain accurately.


AIAA Journal ◽  
1970 ◽  
Vol 8 (10) ◽  
pp. 1822-1830 ◽  
Author(s):  
R. VAGLIO-LAURIN ◽  
G. MILLER

Three-dimensional (3D) linear stability properties are considered for steady and unsteady 2D or 3D boundary layers with significant non-parallelism present. Two main examples of such non-parallel flows whose stability is of interest are, firstly, steady motion, over roughness elements, in cross flow, or in large-scale separation and, secondly, unsteady 2D Tollmien-Schlichting (TS) motion, with its associated question of secondary instabilities. A high-frequency stability analysis is presented here. It is found that, for 2DTS or steady boundary layers, there is a swing in the direction of maximum TS spatial growth rate, from 0° for parallel flow towards 64.68° away from the free-stream direction, as the nonparallel flow effects increase. These effects then depend principally on, and indeed are proportional to, the local slope of the boundary-layer displacement. Cross flow can also have a profound impact on TS instabilities. Further implications for higher-amplitude and/or fasterscale disturbances, their secondary instability, and nonlinear interactions, are also discussed.


1972 ◽  
Vol 94 (2) ◽  
pp. 321-329 ◽  
Author(s):  
J. R. Shanebrook ◽  
D. E. Hatch

A family of hodograph models for the cross flow velocity component of three-dimensional, turbulent boundary layers is presented. The principal advantage of this family is its flexibility which allows a wide variety of possible shapes for the hodograph. An integral method based on this family is developed and applied to data obtained in curved, rectangular channels. For the cases treated, the method gives acceptable results for cross flow profiles with and without flow reversal. Suggestions for refining the method are given.


Author(s):  
A. D. Carmichael

A relatively simple method for predicting some of the characteristics of three-dimensional turbulent boundary layers is presented. The basic assumption of the method is that the cross-flow is small. An empirical correlation of a basic shape factor of the cross-flow boundary layer against the streamwise shape factor H is provided. This correlation, together with data for the streamwise boundary layer, is used to predict the cross flow. The solution is very sensitive to the accuracy of the streamwise boundary-layer data which is predicted by conventional two-dimensional methods.


AIAA Journal ◽  
1967 ◽  
Vol 5 (10) ◽  
pp. 1738-1745 ◽  
Author(s):  
SANG-WOOK KANG ◽  
WILLIAM J. RAE ◽  
MICHAEL G. DUNN

Sign in / Sign up

Export Citation Format

Share Document