mass injection
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 2)

AIAA Journal ◽  
2022 ◽  
pp. 1-12
Author(s):  
Marc Ewenz Rocher ◽  
Tobias Hermann ◽  
Matthew McGilvray ◽  
Rowan Gollan

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hakeem Ullah ◽  
Imran Khan ◽  
Hussain AlSalman ◽  
Saeed Islam ◽  
Muhammad Asif Zahoor Raja ◽  
...  

In this research work, an effective Levenberg–Marquardt algorithm-based artificial neural network (LMA-BANN) model is presented to find an accurate series solution for micropolar flow in a porous channel with mass injection (MPFPCMI). The LMA is one of the fastest backpropagation methods used for solving least-squares of nonlinear problems. We create a dataset to train, test, and validate the LMA-BANN model regarding the solution obtained by optimal homotopy asymptotic (OHA) method. The proposed model is evaluated by conducting experiments on a dataset acquired from the OHA method. The experimental results are obtained by using mean square error (MSE) and absolute error (AE) metric functions. The learning process of the adjustable parameters is conducted with efficacy of the LMA-BANN model. The performance of the developed LMA-BANN for the modelled problem is confirmed by achieving the best promise numerical results of performance in the range of E-05 to E-08 and also assessed by error histogram plot (EHP) and regression plot (RP) measures.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Marc Ewenz Rocher ◽  
Tobias Hermann ◽  
Matthew McGilvray ◽  
Hassan Saad Ifti ◽  
Joao Vieira ◽  
...  

Abstract This paper presents the performance of pressure-sensitive paint (PSP) for the direct measurement of species concentration on a porous surface with mass injection. It is used to measure the ability of an injected gas to reduce the mass transfer of freestream species to the surface. A porous alumina sample was sprayed with a PSP luminophore solution. The sample was installed into a flat plate model and exposed to hypersonic cross-flows in the Oxford High-Density Tunnel. Tests were conducted with no coolant injection, air injection, and nitrogen injection at increasing blowing ratios. Oxygen partial pressure maps on the transpiration-cooled surface were obtained for several conditions at unit Reynolds numbers between $$2.58{-}5.0 \times 10^7/ \mathrm{m}$$ 2.58 - 5.0 × 10 7 / m and blowing ratios between $$0.016{-}0.078\%$$ 0.016 - 0.078 % . The oxygen pressure decreases as the unit Reynolds number decreases and the blowing ratio increases. Graphic abstract


2021 ◽  
Author(s):  
Stuart L. Jackson ◽  
David Mosher ◽  
Eric R. Kaiser ◽  
Andrey R. Beresnyak ◽  
Robert J. Commisso ◽  
...  

2021 ◽  
pp. 106866
Author(s):  
Feng Hu ◽  
Yuming Lu ◽  
Feng Wu ◽  
Yuzhou Ming ◽  
Guozheng Xia ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Affelia Wibisono ◽  
Graziella Branduardi-Raymont ◽  
Will Dunn ◽  
Tomoki Kimura ◽  
Andrew Coates ◽  
...  

<p>Voyager 1 detected the first extra-terrestrial UV auroral emissions when it explored the Jupiter system in 1979 while the planet’s X-ray aurora was discovered later that year by the Einstein Observatory. Electrons are accelerated into Jupiter’s atmosphere near the poles and excite native molecular and atomic hydrogen. These then release UV photons after returning to the ground state. The same population of precipitating electrons can also emit high energy (>2 keV) X-ray photons by bremsstrahlung to produce Jupiter’s hard X-ray aurora. At higher latitudes and within the oval of UV and hard X-ray emissions is where the more diffuse UV and low energy (<2 keV) soft X-ray aurorae are found.  Charge exchange processes between precipitating ions and neutrals in the gas giant planet’s atmosphere are responsible for the soft X-ray emissions.</p><p>Simultaneous observations of Jupiter’s UV and X-ray aurorae were carried out by the Hubble Space Telescope (HST), Hisaki satellite and XMM-Newton in September 2019 to support Juno’s 22<sup>nd</sup> perijove. Images of the northern far UV aurora by HST showed internally driven dawn storms and injection events occurring at least twice during the observation period. These features are thought to be caused by magnetic reconnection happening in the middle magnetosphere. This subsequently leads to the dipolarization of the field lines which injects hot magnetospheric plasma from the middle to the inner magnetosphere. Hisaki saw an impulsive brightening in the Io plasma torus on the day of the second event showing that there was indeed a large-scale injection that penetrated the central torus in the inner magnetosphere. At this time, the northern aurora brightened in both extreme UV and hard X-ray, which suggests that there was an increase in electron precipitation.  There was no response from the soft X-ray aurora, and no quasi-periodic pulsations, often observed in the auroral emissions, were detected during either of the events. X-ray spectral analysis reveals that the precipitating ions were iogenic. We conclude that we have witnessed two cases of mass injection in the Jovian inner magnetosphere due to Io mass loading events.</p>


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2121
Author(s):  
Kyu-Shik Lee ◽  
Eun-Young Yun ◽  
Tae-Won Goo

In the present study, we developed an automatic mass-injection system (AMIS) to produce an extract of infected H. illucens larvae (iHIL-E) and then evaluated antimicrobial peptide (AMP) expressions and assessed the antimicrobial activity of iHIL-E against various pathogens and Lactobacillus species. AMP gene expressions were assessed by real-time quantitative polymerase chain reaction (PCR) and the antimicrobial activities of iHIL-E were estimated using a radial diffusion assay and by determining minimal inhibitory concentrations. Results showed that the antimicrobial activity of HIL extract was effectively enhanced by L. casei infection and that the gene expressions of cecropin 3 and defensin 3 (antimicrobial peptides) were up-regulated. iHIL-E also prevented the growths of Enterococcus faecalis, Streptococcus mutans, and Candida vaginitis (MICs 200, 500, and 1000 µg/100 µL, respectively) and demonstrated high protease resistance. Moreover, the growths of methicillin-resistant Staphylococcus aureus, antibiotic-resistant Pseudomonas aeruginosa and AMP-resistant bacteria, Serratia marcescens, and Pseudomons tolaasii were significantly suppressed by iHIL-E. In addition, although iHIL completely cleared Salmonella species at concentrations of >200 µg/100 µL, Lactobacillus species were unaffected by iHIL at concentrations of <1000 µg/100 µL. The present investigation shows that the devised automatic mass injection system is effective for the mass production of the extract of infected HIL and that this extract is a novel, natural, protease-resistant, antibiotic candidate with broad-spectrum antibiotic activity.


2020 ◽  
Vol 15 ◽  

The performance of fluid transportation model through non-circular elbow ducts with wall mass injection in predicting the velocity and pressure fields is important in Industrial applications. The present work pertains to the two-dimensional numerical analysis of the developing turbulent fluid flow with uniform mass injection through the top wall of a rectangular elbow. A numerical experimentation using control volume formulation considering standard k   turbulence model has been conducted to study different parameters like the velocity distributions, size and shape of the recirculation bubble as well as the friction factor etc. The size and strength of the recirculation bubbles generated in the bend regions are affected by the continuous entry of mass injected through the wall of the elbow. The results show that the velocity field, reattachment points, friction factor etc. are influenced by the side mass injection. The recirculation bubble has been observed to diminish in size by the injection of mass with corresponding changes in the velocity and the friction factors.


Sign in / Sign up

Export Citation Format

Share Document