Impact of artificial gravity on habitability for space base

1970 ◽  
Author(s):  
J. GREEN ◽  
W. PILAND
Keyword(s):  
Author(s):  
Longxiang Su ◽  
Yinghua Guo ◽  
Yajuan Wang ◽  
Delong Wang ◽  
Changting Liu

AbstractTo explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P< 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50 and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P< 0.05). Neither control nor CM groups showed significant differences in the pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG CMs.


2005 ◽  
Vol 44 (25) ◽  
pp. 9384-9390 ◽  
Author(s):  
Mugurel C. Munteanu ◽  
Ion Iliuta ◽  
Faïçal Larachi

2021 ◽  
Vol 137 (2) ◽  
pp. 26
Author(s):  
B.E. Malyugin ◽  
M.I. Koloteva ◽  
N.A. Pozdeyeva ◽  
T.A. Morozova ◽  
D.V. Sychova ◽  
...  
Keyword(s):  

2021 ◽  
Vol 5 (1) ◽  
pp. 27-34
Author(s):  
H. Lu ◽  
C. Wang ◽  
Yu. M. Zabolotnov

The dynamic analysis and motion control of a spinning tether system for an interplanetary mission to Mars is considered. The space system consists of two spacecraft connected by a tether with thrusts to control its movement. The movements of the tether system in the sphere of action of the Earth, on the interplanetary trajectory and in the sphere of action of Mars are consistently analyzed. In near-Earth orbit, the transfer of the system into rotation with the help of jet engines installed on the end spacecrafts is considered. The spin of the system is used to create artificial gravity during the interplanetary flight. The tether system spins in the plane perpendicular to the plane of the orbital motion of the center of mass of the system. To describe spatial motion of the system, a mathematical model is used, in which the tether is represented as a set of material points with viscoelastic unilateral mechanical connections. When calculating the movement of the system, an approach based on the method of spheres of action is used. Spacecrafts are considered as material points. The level of gravity and spin of tether system is controlled by thrusters. The structure of the controller for controlling the angular speed of rotation of the tether system is proposed. The simulation results are presented to confirm the effectiveness of the proposed control algorithm, which provides a given level of artificial gravity for th e interplanetary mission under consideration.


Sign in / Sign up

Export Citation Format

Share Document