interplanetary mission
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 0)

Astrodynamics ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 69-79
Author(s):  
Anran Wang ◽  
Li Wang ◽  
Yinuo Zhang ◽  
Baocheng Hua ◽  
Tao Li ◽  
...  

AbstractTianwen-1 (TW-1) is the first Chinese interplanetary mission to have accomplished orbiting, landing, and patrolling in a single exploration of Mars. After safe landing, it is essential to reconstruct the descent trajectory and determine the landing site of the lander. For this purpose, we processed descent images of the TW-1 optical obstacle-avoidance sensor (OOAS) and digital orthophoto map (DOM) of the landing area using our proposed hybrid-matching method, in which the landing process is divided into two parts. In the first, crater matching is used to obtain the geometric transformations between the OOAS images and DOM to calculate the position of the lander. In the second, feature matching is applied to compute the position of the lander. We calculated the landing site of TW-1 to be 109.9259° E, 25.0659° N with a positional accuracy of 1.56 m and reconstructed the landing trajectory with a horizontal root mean squared error of 1.79 m. These results will facilitate the analyses of the obstacle-avoidance system and optimize the control strategy in the follow-up planetary-exploration missions.


2021 ◽  
Vol 5 (1) ◽  
pp. 27-34
Author(s):  
H. Lu ◽  
C. Wang ◽  
Yu. M. Zabolotnov

The dynamic analysis and motion control of a spinning tether system for an interplanetary mission to Mars is considered. The space system consists of two spacecraft connected by a tether with thrusts to control its movement. The movements of the tether system in the sphere of action of the Earth, on the interplanetary trajectory and in the sphere of action of Mars are consistently analyzed. In near-Earth orbit, the transfer of the system into rotation with the help of jet engines installed on the end spacecrafts is considered. The spin of the system is used to create artificial gravity during the interplanetary flight. The tether system spins in the plane perpendicular to the plane of the orbital motion of the center of mass of the system. To describe spatial motion of the system, a mathematical model is used, in which the tether is represented as a set of material points with viscoelastic unilateral mechanical connections. When calculating the movement of the system, an approach based on the method of spheres of action is used. Spacecrafts are considered as material points. The level of gravity and spin of tether system is controlled by thrusters. The structure of the controller for controlling the angular speed of rotation of the tether system is proposed. The simulation results are presented to confirm the effectiveness of the proposed control algorithm, which provides a given level of artificial gravity for th e interplanetary mission under consideration.


2020 ◽  
Vol 641 ◽  
pp. A45
Author(s):  
René Heller ◽  
Guillem Anglada-Escudé ◽  
Michael Hippke ◽  
Pierre Kervella

The solar photon pressure provides a viable source of thrust for spacecraft in the solar system. Theoretically it could also enable interstellar missions, but an extremely small mass per cross section area is required to overcome the solar gravity. We identify aerographite, a synthetic carbon-based foam with a density of 0.18 kg m−3 (15 000 times more lightweight than aluminum) as a versatile material for highly efficient propulsion with sunlight. A hollow aerographite sphere with a shell thickness ϵshl  =  1 mm could go interstellar upon submission to solar radiation in interplanetary space. Upon launch at 1 AU from the Sun, an aerographite shell with ϵshl  =  0.5 mm arrives at the orbit of Mars in 60 d and at Pluto’s orbit in 4.3 yr. Release of an aerographite hollow sphere, whose shell is 1 μm thick, at 0.04 AU (the closest approach of the Parker Solar Probe) results in an escape speed of nearly 6900 km s−1 and 185 yr of travel to the distance of our nearest star, Proxima Centauri. The infrared signature of a meter-sized aerographite sail could be observed with JWST up to 2 AU from the Sun, beyond the orbit of Mars. An aerographite hollow sphere, whose shell is 100 μm thick, of 1 m (5 m) radius weighs 230 mg (5.7 g) and has a 2.2 g (55 g) mass margin to allow interstellar escape. The payload margin is ten times the mass of the spacecraft, whereas the payload on chemical interstellar rockets is typically a thousandth of the weight of the rocket. Using 1 g (10 g) of this margin (e.g., for miniature communication technology with Earth), it would reach the orbit of Pluto 4.7 yr (2.8 yr) after interplanetary launch at 1 AU. Simplistic communication would enable studies of the interplanetary medium and a search for the suspected Planet Nine, and would serve as a precursor mission to α Centauri. We estimate prototype developments costs of 1 million USD, a price of 1000 USD per sail, and a total of < 10 million USD including launch for a piggyback concept with an interplanetary mission.


Author(s):  
S.E. Pugachenko ◽  
D.A. Kozedub

The investigation concerned a methodological approach to selecting crew maintenance modes for a lunar orbital spaceport station and sought to detect the most efficient mode. We assumed the orbital station characteristics to be close to those of the Lunar Orbital Platform-Gateway project that is currently scheduled in the USA. Using such a station as a base for assembling an interplanetary mission system is part of developing manned astronautics. We utilised systems analysis to conduct our investigation. We developed a mathematical model of the lunar space infrastructure, including the orbital station, transportation vehicles and launch vehicles. We assume a dual launch mission profile where a space tug attaches to a spacecraft or module in a low Earth orbit for a subsequent lunar transfer. We obtained program costs as a function of average launch frequency of the interplanetary mission system modules for two crew maintenance options. We determined a feasible range of average delivery frequency for interplanetary mission system modules, leading to long-term stay being preferable for manned missions while a system like this is being deployed.


Sign in / Sign up

Export Citation Format

Share Document