A high-acceleration resistant electronic fuse for in-flight ignitionor ejection of projectile payloads

Author(s):  
W. MERMAGEN
Keyword(s):  
2019 ◽  
Vol 24 (5) ◽  
pp. 2161-2170
Author(s):  
Jun Young Yoon ◽  
Jeffrey H. Lang ◽  
David L. Trumper

2010 ◽  
Vol 17 (6) ◽  
pp. 787-802 ◽  
Author(s):  
Gerard Kelly ◽  
Jeff Punch ◽  
Suresh Goyal ◽  
Michael Sheehy

This theme of this paper is the design and characterisation of a velocity amplifier (VAMP) machine for high-acceleration shock testing of micro-scale devices. The VAMP applies multiple sequential impacts to amplify velocity through a system of three progressively smaller masses constrained to move in the vertical axis. Repeatable, controlled, mechanical shock pulses are created through the metal-on-metal impact between pulse shaping test rods, which form part of the penultimate and ultimate masses. The objectives are to investigate the controllable parameters that affect the shock pulses induced on collision, namely; striker and incident test rod material; test rod length; pulse shaping mechanisms; and impact velocity. The optimum VAMP configuration was established as a 60 mm long titanium striker test rod and a 120 mm long titanium incident rod. This configuration exhibited an acceleration magnitude and a primary pulse duration range of 5,800–23,400 g and 28.0–44.0μs respectively. It was illustrated that the acceleration spectral content can be manipulated through control of the test rod material and length. This is critical in the context of practical applications, where it is postulated that the acceleration signal can be controlled to effectively excite specific components in a multi-component assembly affixed to the VAMP incident test rod.


Robotica ◽  
2001 ◽  
Vol 19 (1) ◽  
pp. 87-91 ◽  
Author(s):  
M. Guihard ◽  
P. Gorce

The aim of this paper is to propose a bipedal structure able to follow high acceleration movements. The vertical jump of a human has been chosen as input (coming from experiments) to validate the controller design as it is one of the most complex motion. The study concerns the low level of the biped control that is to say the control design of one leg made of three rigid bodies, each of them moved by a pneumatic actuator. An analogy between a pneumatic actuator and a physiological muscle is first proposed. A dynamic model of the leg is then presented decoupling the dynamic effects of the skeletal (as interactions between segments) from the dynamic effects of the muscles involved. The controller is based on the nonlinear theory (taking into account the actuator and the mechanical models), it ensures a dynamic tracking of position and force. Its originality lays in the consideration of impedance behaviour at each joint during free and constrained tasks. It leads to asymptotically stable (Popov criteria) control laws which are continuous between contact and non-contact phases enabling real-time computations. The simulation results clearly show the tracking of position and forces during the whole jump cycle.


2006 ◽  
Author(s):  
Changbiao Wang ◽  
V. P. Yakovlev ◽  
T. C. Marshall ◽  
M. A. LaPointe ◽  
J. L. Hirshfield
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document