vestibular neurectomy
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 16)

H-INDEX

25
(FIVE YEARS 1)

Author(s):  
Edoardo Porto ◽  
J. Manuel Revuelta Barbero ◽  
Eduardo Medina ◽  
Tomas Garzon-Muvdi ◽  
Douglas E. Mattox ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3377
Author(s):  
Emna Marouane ◽  
Nada El Mahmoudi ◽  
Guillaume Rastoldo ◽  
David Péricat ◽  
Isabelle Watabe ◽  
...  

Acute peripheral vestibulopathy leads to a cascade of symptoms involving balance and gait disorders that are particularly disabling for vestibular patients. Vestibular rehabilitation protocols have proven to be effective in improving vestibular compensation in clinical practice. Yet, the underlying neurobiological correlates remain unknown. The aim of this study was to highlight the behavioural and cellular consequences of a vestibular rehabilitation protocol adapted to a rat model of unilateral vestibular neurectomy. We developed a progressive sensory-motor rehabilitation task, and the behavioural consequences were quantified using a weight-distribution device. This analysis method provides a precise and ecological analysis of posturolocomotor vestibular deficits. At the cellular level, we focused on the analysis of plasticity mechanisms expressed in the vestibular nuclei. The results obtained show that vestibular rehabilitation induces a faster recovery of posturolocomotor deficits during vestibular compensation associated with a decrease in neurogenesis and an increase in microgliogenesis in the deafferented medial vestibular nucleus. This study reveals for the first time a part of the underlying adaptative neuroplasticity mechanisms of vestibular rehabilitation. These original data incite further investigation of the impact of rehabilitation on animal models of vestibulopathy. This new line of research should improve the management of vestibular patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Nada El Mahmoudi ◽  
Guillaume Rastoldo ◽  
Emna Marouane ◽  
David Péricat ◽  
Isabelle Watabe ◽  
...  

Abstract Background Due to their anti-inflammatory action, corticosteroids are the reference treatment for brain injuries and many inflammatory diseases. However, the benefits of acute corticotherapy are now being questioned, particularly in the case of acute peripheral vestibulopathies (APV), characterized by a vestibular syndrome composed of sustained spinning vertigo, spontaneous ocular nystagmus and oscillopsia, perceptual-cognitive, posturo-locomotor, and vegetative disorders. We assessed the effectiveness of acute corticotherapy, and the functional role of acute inflammation observed after sudden unilateral vestibular loss. Methods We used the rodent model of unilateral vestibular neurectomy, mimicking the syndrome observed in patients with APV. We treated the animals during the acute phase of the vestibular syndrome, either with placebo or methylprednisolone, an anti-inflammatory corticosteroid. At the cellular level, impacts of methylprednisolone on endogenous plasticity mechanisms were assessed through analysis of cell proliferation and survival, glial reactions, neuron’s membrane excitability, and stress marker. At the behavioral level, vestibular and posturo-locomotor functions’ recovery were assessed with appropriate qualitative and quantitative evaluations. Results We observed that acute treatment with methylprednisolone significantly decreases glial reactions, cell proliferation and survival. In addition, stress and excitability markers were significantly impacted by the treatment. Besides, vestibular syndrome’s intensity was enhanced, and vestibular compensation delayed under acute methylprednisolone treatment. Conclusions We show here, for the first time, that acute anti-inflammatory treatment alters the expression of the adaptive plasticity mechanisms in the deafferented vestibular nuclei and generates enhanced and prolonged vestibular and postural deficits. These results strongly suggest a beneficial role for acute endogenous neuroinflammation in vestibular compensation. They open the way to a change in dogma for the treatment and therapeutic management of vestibular patients.


2021 ◽  
pp. 102119
Author(s):  
Justine Facchini ◽  
Guillaume Rastoldo ◽  
Christian Xerri ◽  
David Péricat ◽  
Abdessadek El Ahmadi ◽  
...  

Author(s):  
Skyler G. Jennings

This review addresses the putative role of the medial olivocochlear (MOC) reflex on psychophysical masking and intensity resolution in humans. A framework for interpreting psychophysical results in terms of the expected influenced of the MOC reflex is introduced. This framework is used to review the effects of a precursor or contralateral acoustic stimulation on 1) simultaneous masking of brief tones, 2) behavioral estimates of cochlear gain and frequency resolution in forward masking, 3) the build-up and decay of forward masking, and 4) measures of intensity resolution. Support, or lack thereof, for a role of the MOC reflex in psychophysical perception is discussed in terms of studies on estimates of MOC strength from otoacoustic emissions and the effects of resection of the olivocochlear bundle in patients with vestibular neurectomy. Novel, innovative approaches are needed to resolve the dissatisfying conclusion that current results are unable to definitively confirm or refute the role of the MOC reflex in masking and intensity resolution.


2021 ◽  
Author(s):  
Nada El Mahmoudi ◽  
Guillaume Rastoldo ◽  
Emna Marouane ◽  
David Péricat ◽  
Isabelle Watabe ◽  
...  

Abstract Background : Due to their anti-inflammatory action, corticosteroids are the reference treatment for brain injuries and many inflammatory diseases. However, the benefits of acute corticotherapy are now being questioned, particularly in the case of acute peripheral vestibulopathies (APV), characterized by a vestibular syndrome composed of sustained spinning vertigo, spontaneous ocular nystagmus and oscillopsia, perceptual-cognitive, posturo-locomotor, and vegetative disorders. We assessed the effectiveness of acute corticotherapy, and the functional role of acute inflammation observed after sudden unilateral vestibular loss. Methods : We used the rodent model of unilateral vestibular neurectomy, mimicking the syndrome observed in patients with APV. We treated the animals during the acute phase of the vestibular syndrome, either with placebo or methylprednisolone, an anti-inflammatory corticosteroid. We used both cellular and behavioral approaches with 2-way ANOVA statistical analysis to evaluate the consequences of an acute anti-inflammatory treatment on post-lesional plasticity and functional recovery. Results : We show here, for the first time, that acute anti-inflammatory treatment alters the expression of the adaptive plasticity mechanisms in the deafferented vestibular nuclei and generates enhanced and prolonged vestibular and postural deficits. Conclusions : These results strongly suggest a beneficial role for acute endogenous neuroinflammation in vestibular compensation. They open the way to a change in dogma for the treatment and therapeutic management of vestibular patients.


2021 ◽  
Author(s):  
Guillaume Rastoldo ◽  
Emna Marouane ◽  
Nada El Mahmoudi ◽  
David Pericat ◽  
Isabelle Watabe ◽  
...  

AbstractUnilateral vestibular lesions induce a vestibular syndrome, which recovers over time due to vestibular compensation. The therapeutic effect of L-Thyroxine (L-T4) on vestibular compensation was investigated by behavioral testing and immunohistochemical analysis in a rat model of unilateral vestibular neurectomy (UVN). We demonstrated that an acute L-T4 treatment reduced the vestibular syndrome and significantly promoted vestibular compensation. Thyroid hormone receptors (TRα and TRβ) and type II iodothyronine deiodinase (DIO2) were present in the vestibular nuclei (VN), supporting a local action of L-T4. We confirmed the T4-induced metabolic effects by demonstrating an increase in the number of cytochrome oxidase-labelled neurons in the VN three days after the lesion. L-T4 treatment modulated glial reaction by decreasing both microglia and oligodendrocytes in the deafferented VN three days after UVN and increased cell proliferation. The survival of newly generated cells was not affected, but neuronal differentiation was altered by the L-T4 treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Omid A. Zobeiri ◽  
Gavin M. Mischler ◽  
Susan A. King ◽  
Richard F. Lewis ◽  
Kathleen E. Cullen

AbstractThe vestibular system is vital for maintaining balance and stabilizing gaze and vestibular damage causes impaired postural and gaze control. Here we examined the effects of vestibular loss and subsequent compensation on head motion kinematics during voluntary behavior. Head movements were measured in vestibular schwannoma patients before, and then 6 weeks and 6 months after surgical tumor removal, requiring sectioning of the involved vestibular nerve (vestibular neurectomy). Head movements were recorded in six dimensions using a small head-mounted sensor while patients performed the Functional Gait Assessment (FGA). Kinematic measures differed between patients (at all three time points) and normal subjects on several challenging FGA tasks, indicating that vestibular damage (caused by the tumor or neurectomy) alters head movements in a manner that is not normalized by central compensation. Kinematics measured at different time points relative to vestibular neurectomy differed substantially between pre-operative and 6-week post-operative states but changed little between 6-week and > 6-month post-operative states, demonstrating that compensation affecting head kinematics is relatively rapid. Our results indicate that quantifying head kinematics during self-generated gait tasks provides valuable information about vestibular damage and compensation, suggesting that early changes in patient head motion strategy may be maladaptive for long-term vestibular compensation.


Sign in / Sign up

Export Citation Format

Share Document