Comparative acoustic wind-tunnel measurements and theoretical correlations on subsonic aircraft propellers at full-scale and model-scale

1981 ◽  
1989 ◽  
Vol 111 (4) ◽  
pp. 748-754
Author(s):  
V. Salemann ◽  
J. M. Williams

A new method for modeling hot underexpanded exhaust plumes with cold model scale plumes in aerodynamic wind tunnel testing has been developed. The method is applicable to aeropropulsion testing where significant interaction between the exhaust and the free stream and aftbody may be present. The technique scales the model and nozzle external geometry, including the nozzle exit area, matches the model jet to free-stream dynamic pressure ratio to full-scale jet to free-stream dynamic pressure ratio, and matches the model thrust coefficient to full-scale thrust coefficient. The technique does not require scaling of the internal nozzle geometry. A generalized method of characteristic computer code was used to predict the plume shapes of a hot (γ = 1.2) half-scale nozzle of area ratio 3.2 and of a cold (γ = 1.4) model scale nozzle of area ratio 1.3, whose pressure ratio and area ratio were selected to satisfy the above criteria and other testing requirements. The plume shapes showed good agreement. Code validity was checked by comparing code results for cold air exhausting into a quiescent atmosphere to pilot surveys and shadowgraphs of model nozzle plumes taken in a static facility.


Author(s):  
Arjen Koop ◽  
Alexei Bereznitski

In this paper results of CFD calculations with the MARIN in-house code ReFRESCO are presented for the JBF-14000 Semi-Submersible designed by Huisman Equipment BV. The objective of the CFD calculations is to investigate the applicability, the costs and the accuracy of CFD to obtain the current coefficients of a semi-submersible for all headings. Furthermore, full scale CFD calculations are carried out to investigate possible scale effects on the current coefficients. An extensive verification study has been carried for the model-scale current loads on a semi-submersible using 10 different grids of different grid type for 3 different headings, i.e. 180, 150 and 90 degrees. These headings represent the main different flow regions around the semi-submersible. The CFD results are compared with the results from wind tunnel experiments and tests in the Offshore Basin for a range of current headings. The results for the force coefficients are not very dependent on grid resolution and grid type. The largest differences found are less than 10% and these are obtained for CX results for 180 degrees. For the results obtained on the same grid type the results change less than 4% when the grid is refined. These verification results give good confidence in the CFD results. For the angles with larger forces, i.e. the range [180:130] for CX and the range [150:90] for CY the CFD results are within 12% or better from the experiments. Full-scale force coefficients are calculated using 5 subsequently refined grids for three different headings, i.e. 180, 150 and 90 degrees. Scale effects should only be determined when the effect of grid refining is investigated. The trend of the force coefficients when refining the grid, can be different for model-scale and full-scale. The use of coarse grids can lead to misleading conclusions. On average the full-scale values are approximately 15–20% lower than for model-scale. However, larger differences for a number of angles do exist.


Sign in / Sign up

Export Citation Format

Share Document