thrust coefficient
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 114)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
Jun Yang ◽  
Dakui Feng ◽  
Liwei Liu ◽  
Xianzhou Wang ◽  
Chaobang Yao

This study presents a numerical research on the open-water performance of a pumpjet propulsor at different scales. Simulations were performed by an in-house viscous CFD (Computational Fluid Dynamic) code. The Reynolds-averaged Navier–Stokes (RANS) method with SST k-w turbulence model is employed. A dynamic overset grid is used to treat the relative motion between the rotor and other parts. The numerical results are compared with the model test data and they agree well. Comparisons for the open-water performance between the pumpjet propulsors with two scales are carried out. The results indicate that the total thrust coefficient of the large-scale pumpjet propulsor is greater than that of the small-scale one while the torque coefficient is smaller. Therefore, the efficiency of the large-scale pumpjet propulsor is about 8~10% higher than that of the small-scale pumpjet propulsor. The open-water performance of the rotor, pre-swirl stator and duct is obtained separately to estimate the discrepancies on the thrust and torque coefficients between different scales. To analyze the scale effect from different parts, the research on flow field and pressure distribution are carried out. The variation of total thrust and torque coefficient comes mainly from the rotor, which is caused by the flow field, influenced by the duct and stator.


Author(s):  
N. Asmuin ◽  
◽  
Basuno B. ◽  
M.F. Yaakub ◽  
N.A. Nor Salim ◽  
...  

The present work uses the method of Blade Element Momentum Theory as suggested by Hansen. The method applied to three blade models adopted from Rahgozar S. with the airfoil data used the data provided by Wood D. The wind turbine performance described in term of the thrust coefficient C_T, torque coefficient C_Q and the power coefficient C_p . These three coefficient can be deduced from the Momentum theory or from the Blade element Theory(BET). The present work found the performance coefficient derived from the Momentum theory tent to over estimate. It is suggested to used the BET formulation in presenting these three coefficients. In overall the Blade Element Momentum Theory follows the step by step as described by Hansen work well for these three blade models. However a little adjustment on the blade data is needed. To the case of two bladed horizontal axis wind


2021 ◽  
Vol 28 (4) ◽  
pp. 4-19
Author(s):  
Fengkun Li ◽  
Pengyao Yu ◽  
Qiang Wang ◽  
Guangzhao Li ◽  
Xiangcheng Wu

Abstract Numerical simulations of fluid-structure interaction (FSI) on an elastic foil heaving with constant amplitude in freestream flow are carried out at a low Reynolds number of 20,000. The commercial software STAR-CCM+ is employed to solve the flow field and the large-scale passive deformation of the structure. The results show that introducing a certain degree of flexibility significantly improves the thrust and efficiency of the foil. For each Strouhal number St considered, an optimal flexibility exists for thrust; however, the propulsive efficiency keeps increasing with the increase in flexibility. The visualisation of the vorticity fields elucidates the improvement of the propulsive characteristics by flexibility. Furthermore, the mechanism of thrust generation is discussed by comparing the time-varying thrust coefficient and vortex structure in the wake for both rigid and elastic foils. Finally, in addition to sinusoidal motions, we also consider the effect of non-sinusoidal trajectories defined by flattening parameter S on the propulsive characteristics for both rigid and elastic foils. The non-sinusoidal trajectories defined by S=2 are associated with the maximum thrust, and the highest values of propulsive efficiency are obtained with S=0.5 among the cases considered in this work.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Dong Li ◽  
Kexin Wu

Mechanical thrust vector control is a classical and significant branch in the thrust vector control field, offering an extremely reliable control effect. In this article, steady-state and unsteady-state aerodynamic characteristics of the rod thrust vector control technology are numerically investigated in a two-dimensional supersonic nozzle. Complex flow phenomena caused by the penetrating rod in the diverging part of the supersonic nozzle are elucidated with the purpose of a profound understanding of this simple flow control technique for physical applications. Published experimental data are used to validate the dependability of current computational fluid dynamics results. A grid sensitivity study is carried through and analyzed. The result section discusses the impacts of two important factors on steady-state aerodynamic features, involving the rod penetration height and the rod location. Furthermore, unsteady-state flow features are analyzed under various rod penetration heights for the first time. Significant vectoring performance variations and flow topology descriptions are illuminated in full detail. While the rod penetration height increases, the vectoring angle increases, whereas the thrust coefficient decreases. As the rod location moves downstream close to the nozzle exit, the vectoring angle and thrust coefficient increase. In terms of unsteady-state aerodynamic effects, certain pressure oscillations occur upstream of the rod, which resulted from the expanding and shrinking of the upstream anticlockwise separation bubbles.


2021 ◽  
Vol 9 (11) ◽  
pp. 1247
Author(s):  
Yu Lu ◽  
Chunxiao Wu ◽  
Shewen Liu ◽  
Zhuhao Gu ◽  
Wu Shao ◽  
...  

When a ship sails in an ice area, the ice could cause damage to ship hull and the propeller as well as the rudder. In the design process of an ice class propeller, the strength verification of the propeller has always been the focus of the design and research of the ice propeller. Based on the International Association of Classification Societies Unified Requirements for Polar Class (IACS Polar UR), it is required that the maximum torque from the propeller cannot exceed the required value to ensure the safety of the propeller shafting equipment. This paper investigates the hydrodynamic performance of the propeller under the condition of satisfying the propeller’s ice strength. A parametric propeller optimization design procedure was established in which the thrust coefficient and open water efficiency solved by CFD method were selected as the objective function and optimization target, the maximum ice torque was used as the optimization constraint under the condition that the ship’s shafting equipment remains unchanged, the propeller pitch, thickness, and camber at each radial direction were taken as the optimization design variables, and the optimization algorithm of SOBOL and NSGA-II was adopted. The interaction mode of propeller and ice was simulated by the method of explicit dynamics. The equivalent stress and displacement response of the blade during the cutting process of the ice propeller were calculated, monitoring the ice destruction process. The results show that the multi-objective Pareto optimal solution set of thrust coefficient and open water efficiency of the ice class propeller was formed at the design speed while maintain the maximum ice torque not exceeding the original ice torque.


2021 ◽  
Vol 9 (11) ◽  
pp. 1215
Author(s):  
Yangwei Wang ◽  
Jiahuan Lin ◽  
Huawei Duan ◽  
Jun Zhang

In the natural marine environment, offshore floating wind turbines (OFWTs) inevitably experience yawed inflow conditions, which will make their aerodynamics more complicated than uniform inflow conditions and difficult to understand. In the present study, the thrust characteristics of a wake-influenced OFWT under dynamic, static, and coupled yawed inflow conditions are investigated thoroughly. Analytical characterizations of yawed inflow and upstream wake are integrated into the blade element momentum (BEM) method to achieve the investigation. Based on this method, simulations by the FAST code have been conducted, and the results are analyzed. It is shown that the three inflow conditions have considerable influences on the thrust coefficient of the wind rotor or the normal force at the blade section, especially in the wake case where the downstream OFWT is located at a specific offset from the central line of a single upstream wake. In order to validate the analyses of simulation results, experimental tests by a set of dedicated apparatus are conducted. The comparison results are good, proving the reliability of simulation results. This work can provide some theoretical contributions to the aerodynamic design and control of OFWTs.


2021 ◽  
Vol 24 (5) ◽  
pp. 60-75
Author(s):  
K. G. Kosushkin ◽  
B. S. Kritsky ◽  
R. M. Mirgazov

The article presents the results of computational studies of aerodynamic characteristics for unmanned lift-generating multi-rotor drones of various configurations. The distinctive features of rotors flow were characterized. The rotor interaction was evaluated. The computations were based on the nonlinear rotor blade vortex theory in a non-stationary arrangement. The combinations of four, eight (four coaxial) and fourteen two-bladed rotors at velocity V = 100, 150, 200 km/h were considered. Semi-empirical methods were employed to select the rotor angles of attack, rotation speed, blade installation angles and geometric parameters at the given take-off weight for each combination of rotors and flight airspeed. The computations showed that for a four-rotor lift-generating design (quad-rotor), two rotors installed downstream, depending on the velocity due to the mutual effect, have values of the thrust coefficients ≈10...20% less than those of the rotors located upstream. For a coaxial quad-copter, the effect of the upper front rotor on the upper rear rotor is similar to the effect of the front rotors on the rear ones in a four-rotor lift-generating design. The effect of the upper front rotor on the lower rear rotor does not vary in terms of the average thrust value, and variations are only local in nature. The interaction of other rotors is identical to that of the four-rotor version. A fourteen-rotor lift-generating multi-rotor drone has a complex flow pattern, which generates deviance in the thrust coefficients variation with respect to time. Depending on the mode and rotors location, the average rotor thrust coefficient can vary approximately twice. The computations showed that with the similar geometric parameters and kinematics characteristics, rotors thrust is substantially subject to variation, which causes destabilizing moments to a significant degree without additional control input. Thrust pulsations and, respectively, vibrations grow in intensity as the flight airspeed increases. Probably, the right choice of the rotor configuration and the automatic control system can counterbalance thrust surge by so-called "phasing", i.e. selecting an initial azimuth angle for each rotor.


2021 ◽  
Author(s):  
Kazuo Matsuuchi

To understand the force acting on birds, insects, and fish, we take heaving motion as a simple example. This motion might deviate from the real one. However, since the mechanism of force generation is the vortex shedding due to the motion of an object, the heaving motion is important for understanding the force generated by unsteady motion. The vortices released from the object are closely related to the motion characteristics. To understand the force acting on an object, information about momentum change is necessary. However, in vortex systems, it is impossible to estimate the usual momentum. Instead of the momentum, the “virtual momentum,” or the impulse, is needed to generate the force. For calculating the virtual momentum, we traced all vortices over a whole period, which was carried out by using the vortex-element method. The force was then calculated based on the information on the vortices. We derived the thrust coefficient as a function of the ratio of the heaving to travelling velocity.


2021 ◽  
Vol 11 (21) ◽  
pp. 9935
Author(s):  
Theologos Andronikos ◽  
George Papadakis ◽  
Vasilis Riziotis ◽  
Spyros Voutsinas

The interaction of a helicopter rotor with the ground in hover flight is addressed numerically using a hybrid Eulerian–Lagrangian CFD model. When a helicopter takes off or lands, its wake interferes with the ground. This interaction, depending on the height-to-rotor diameter ratio, causes the altering of the rotor loading and performance as compared to the unconstrained case and gives rise to the development of a complex outwash flow field in the surrounding of the helicopter. The present study aims to characterize the interactional phenomena occurring in the early stages of the rotor wake development and in particular the interference of the starting vortex with the ground boundary layer and the effect of this interaction in the motion of the vortex in the rotor outwash flow. The hybrid CFD method employed combines a standard URANS compressible finite volume solver, the use of which is restricted to confined grids around solid bodies, and a Lagrangian approximation of the entire flow field in which conservation equations are solved in their material form, disctretized using particle representation of the flow quantities. The two methods are strongly coupled to each other through an appropriate iterative scheme. The main advantage of the proposed methodology is that it can conveniently handle complex configurations with several bodies that move independently from one another, with affordable computational cost. In this paper, thrust coefficient predictions of the hybrid model are compared to predictions of a free wake code and to experimental data indicating that consistent prediction of the rotor load requires the inclusion of the ground boundary layer in the analysis. Moreover, detailed comparisons of the rotor wake evolution predicted by the hybrid model are presented.


Wind Energy ◽  
2021 ◽  
Author(s):  
Luis A Martínez‐Tossas ◽  
Emmanuel Branlard ◽  
Kelsey Shaler ◽  
Ganesh Vijayakumar ◽  
Shreyas Ananthan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document