Calculations of unsteady Navier-Stokes equations around an oscillating 3-D wing using moving grid system

Author(s):  
JIRO NAKAMICHI
1993 ◽  
Vol 252 ◽  
pp. 147-171 ◽  
Author(s):  
B. Yan ◽  
D. B. Ingham ◽  
B. R. Morton

The fluid flow induced by a cascade of circular cylinders which oscillates harmonically in an unbounded, incompressible, viscous fluid which is otherwise at rest is investigated both numerically and experimentally. Attention in this paper is mainly concentrated on the induced steady streaming flow which occurs when the ratio of the amplitude of the oscillation of the cascade to the size of the cylinder, ε, is very small. The leading-order flow is then governed by the steady Navier-Stokes equations. In order to solve these equations numerically we first generate numerically a grid system using the boundary element method and then use a finite-difference scheme on the newly generated rectangular grid system. Numerical results show that for small values of the streaming Reynolds number Rs there are four recirculating flows of equal strength around each circular cylinder of the cascade. At large values of Rs symmetry breaks down and numerical solutions are found for asymmetrical flows. Numerically, a critical value of Rs, Rso say, is identified such that the flow is symmetrical when Rs < Rso and asymmetrical when Rs > Rso and these results are in reasonable agreement with experimental results, which are also presented in this paper.


1999 ◽  
Vol 15 (2) ◽  
pp. 360-362 ◽  
Author(s):  
Homayun K. Navaz ◽  
Raymond M. Berg

2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 56-63
Author(s):  
W. Kyle Anderson ◽  
James C. Newman ◽  
David L. Whitfield ◽  
Eric J. Nielsen

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

Sign in / Sign up

Export Citation Format

Share Document