Pressure decay boiling in reduced gravity

1994 ◽  
Author(s):  
John Saiz
1998 ◽  
Author(s):  
E. J. Metzger ◽  
Robert C. Rhodes ◽  
Dong S. Ko ◽  
Harley E. Hurlburt

2002 ◽  
Vol 2 (5-6) ◽  
pp. 307-311
Author(s):  
P. Côté ◽  
J. Cadera ◽  
N. Adams ◽  
G. Best

Membrane filtration has become the preferred alternative to conventional technology to remove water-borne pathogens in the preparation of drinking water. This paper presents the integrity monitoring and maintenance options for the ZeeWeed® immersed membrane. Results from two versions of air-based tests, a pressure decay test and a vacuum decay test are presented and shown to be conservative when compared to challenge results from independent studies.


2021 ◽  
Vol 60 (15) ◽  
pp. 5494-5503
Author(s):  
Valerio Loianno ◽  
Antonio Baldanza ◽  
Giuseppe Scherillo ◽  
Rezvan Jamaledin ◽  
Pellegrino Musto ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shota Hagio ◽  
Makoto Nakazato ◽  
Motoki Kouzaki

AbstractGravity plays a crucial role in shaping patterned locomotor output to maintain dynamic stability during locomotion. The present study aimed to clarify the gravity-dependent regulation of modules that organize multiple muscle activities during walking in humans. Participants walked on a treadmill at seven speeds (1–6 km h−1 and a subject- and gravity-specific speed determined by the Froude number (Fr) corresponding to 0.25) while their body weight was partially supported by a lift to simulate walking with five levels of gravity conditions from 0.07 to 1 g. Modules, i.e., muscle-weighting vectors (spatial modules) and phase-dependent activation coefficients (temporal modules), were extracted from 12 lower-limb electromyographic (EMG) activities in each gravity (Fr ~ 0.25) using nonnegative matrix factorization. Additionally, a tensor decomposition model was fit to the EMG data to quantify variables depending on the gravity conditions and walking speed with prescribed spatial and temporal modules. The results demonstrated that muscle activity could be explained by four modules from 1 to 0.16 g and three modules at 0.07 g, and the modules were shared for both spatial and temporal components among the gravity conditions. The task-dependent variables of the modules acting on the supporting phase linearly decreased with decreasing gravity, whereas that of the module contributing to activation prior to foot contact showed nonlinear U-shaped modulation. Moreover, the profiles of the gravity-dependent modulation changed as a function of walking speed. In conclusion, reduced gravity walking was achieved by regulating the contribution of prescribed spatial and temporal coordination in muscle activities.


Sign in / Sign up

Export Citation Format

Share Document