Effect of swirling on burning rate for solid rocket motor (SRM)

1994 ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yanjie Ma ◽  
Futing Bao ◽  
Lin Sun ◽  
Yang Liu ◽  
Weihua Hui

Erosive burning refers to the augmentation of propellant burning rate appears when the velocity of combustion gas flowing parallel to the propellant surface is relatively high. Erosive burning can influence the total burning rate of propellant and performance of solid rocket motors dramatically. There have been many different models to evaluate erosive burning rate for now. Yet, due to the complication processes involving in propellant and solid rocket motor combustion, unknown constants often exist in these models. To use these models, trial-and-error procedure must be implemented to determine the unknown constants firstly. This makes many models difficult to estimate erosive burning before plenty of experiments. In this paper, a new erosive burning rate model is proposed based on the assumption that the erosive burning rate is proportional to the heat flux at the propellant surface. With entrance effect, roughness, and transpiration considered, convective heat transfer coefficient correlation proposed in recent years is used to compute the heat flux. This allows the release of unknown constants, making the model universal and easy to implement. The computational data of the model are compared with different experimental and computational data from different models. Results show that good accuracy (10%) with experiments can be achieved by this model. It is concluded that the present model could be used universally for erosive burning rate evaluation of propellant and performance prediction of solid rocket motor as well.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei Xianggeng ◽  
Bo Tao ◽  
Wang Pengbo ◽  
Ma Xinjian ◽  
Lou Yongchun ◽  
...  

Unexpected pressure rise may occur in the end-burning grain solid rocket motor. It is generally believed that this phenomenon is caused by the nonparallel layer combustion of the burning surface, resulting in the increase of burning rate along the inhibitor. In order to explain the cause of this phenomenon, the experimental investigation on four different end configurations were carried out. Based on the X-ray real-time radiography (RTR) technique, a new method for determining the dynamic burning rate of propellant and obtaining the real-time end-burning profile was developed. From the real-time images of the burning surface, it is found that there was a phenomenon of nonuniform burning surface displacement in the end-burning grain solid rocket motor. Through image processing, the real-time burning rate of grain center line and the real-time cone angle are obtained. Based on the analysis of the real-time burning rate at different positions of the end surface, the end face cone burning process in the motor working process is obtained. The closer to the shell, the higher the burning rate of the propellant. Considering the actual structure of this end-burning grain motor, it is speculated that the main cause of the cone burning of the grain may be due to the heat conduction of the metal wall. By adjusting the initial shape of the grain end surface, the operating pressure of the combustion chamber can be basically unchanged, so as to meet the mission requirements. The results show that the method can measure the burning rate of solid propellant in real time and provide support for the study of nonuniform combustion of solid propellant.


2021 ◽  
Author(s):  
Giovanni Montesano

A study of the numerical modeling and prediction of nonlinear unsteady combustion instability within the combustion chamber of a solid rocket motor (SRM) is the main objective. The numerical model consists of a three-dimensional finite-element representation of a cylindrical-grain motor, coupled to a quasi-one-dimensional internal ballistic flow (IBF) model, where a quasi-steady rapid kinetic rate burning rate algorithm is used to model the propellant combustion and regression. Fluid-structure-combustion interaction subroutines are also employed to control the simulated motor firings and the data transferred between the fluid, structure and burning rate model components. Results illustrating the significant effects of structural vibrations on the burning rate and consequently the IBF are shown and compared to experimental data. Modeling considerations are illustrated, giving insight into the physical phenomena of SRM combustion instability.


2018 ◽  
Vol 153 ◽  
pp. 03001
Author(s):  
Almostafa Abdelaziz ◽  
Liang Guozhu ◽  
Anwer Elsayed

Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning), erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.


2021 ◽  
Author(s):  
Giovanni Montesano

A study of the numerical modeling and prediction of nonlinear unsteady combustion instability within the combustion chamber of a solid rocket motor (SRM) is the main objective. The numerical model consists of a three-dimensional finite-element representation of a cylindrical-grain motor, coupled to a quasi-one-dimensional internal ballistic flow (IBF) model, where a quasi-steady rapid kinetic rate burning rate algorithm is used to model the propellant combustion and regression. Fluid-structure-combustion interaction subroutines are also employed to control the simulated motor firings and the data transferred between the fluid, structure and burning rate model components. Results illustrating the significant effects of structural vibrations on the burning rate and consequently the IBF are shown and compared to experimental data. Modeling considerations are illustrated, giving insight into the physical phenomena of SRM combustion instability.


Sign in / Sign up

Export Citation Format

Share Document