A physical explanation of free play effects on the flutter response of an all movable control surface

Author(s):  
Dale Pitt
2000 ◽  
Author(s):  
Earl H. Dowell

Abstract Aeroelastic systems are those that involve the coupled interaction between a convecting fluid and a flexible elastic structure. The nonlinear dynamical response of such systems is of great current interest. Existing aircraft are known to encounter limit cycle oscillations (LCO) in certain flight regimes, and relatively simple experimental wind tunnel models have been designed to exhibit LCO as well. In the present paper, the results of these wind tunnel experiments are discussed and compared to comparable results from mathematical models. The physical models include (1) an airfoil and a control surface attached with an elastic spring including free-play and (2) a delta wing with elastic geometrical nonlinearities due to bending and torsional deformations. Both self-excited oscillations such as flutter and LCO, as well as forced oscillations due to an aerodynamic gust, are discussed. The advantages of representing the unsteady aerodynamic flow field in terms of global modes for such studies are emphasized and illustrated.


2021 ◽  
pp. 107754632110001
Author(s):  
José Augusto I da Silva ◽  
Flávio D Marques

Structural nonlinearities are usually present in aeroelastic systems. The analysis of this system commonly comprises a study involving only one type of nonlinearity, influencing a particular motion of the airfoil. However, practical applications of aeroelastic systems can be affected by different types of structural nonlinearities. It becomes essential to study the stability of the aeroelastic system under these conditions to assess more real operational flight procedures. In this context, this article presents an investigation of a typical aeroelastic section response with trailing edge control surface subjected to combinations of concentrated structural nonlinearities. Different nonlinear scenarios involving cubic hardening stiffness in pitching and free play, free play with preload, and slip dry friction in the trailing edge control surface motion are analyzed. The mathematical model is based on linear unsteady aerodynamics coupled to a three-dof typical aeroelastic section. Hopf bifurcations diagrams are obtained from direct time integration of the equation of motion. The post-flutter limit cycle oscillations are investigated, revealing supercritical and subcritical bifurcations. A complete parametric study of the nonlinear parameters is carried out, thereby allowing a sensitivity analysis of each nonlinear scenario. The results show that aeroelastic tailoring considering the mild post-flutter behavior can be achieved through an appropriate choice of combined nonlinear effects. Moreover, combined nonlinearities can mitigate the undesired subcritical aeroelastic responses caused by free play.


Author(s):  
Jae-Sung Bae ◽  
In Lee

The nonlinear aeroelastic characteristics of a fighter-type wing with control surface have been investigated. The fictitious mass modal approach is used to reduce the problem size and the computation time in the linear and nonlinear flutter analyses. A Doublet-Hybrid method are used for the computation of subsonic unsteady aerodynamic forces. Structural nonlinearity of the control surface hinge is represented by a free-play spring. The linear and nonlinear flutter analyses indicate that the flapping mode of control surface and the hinge stiffness have significant effects on the flutter characteristics. The nonlinear flutter analysis shows that limit cycle oscillation and chaotic motion are observed in the wide range of air speed below the linear flutter boundary and the jump of limit cycle oscillation amplitude is observed. The nonlinear flutter characteristics and the nonlinear flutter boundary of limit cycle oscillation and chaotic motion have been investigated.


2015 ◽  
Vol 23 (14) ◽  
pp. 2269-2290 ◽  
Author(s):  
Andrea Mannarino ◽  
Earl H Dowell ◽  
Paolo Mantegazza

A technique aimed at neutralizing the presence of free-play effects in a control surface actuation chain is presented. It is based on an adaptive inversion of a function approximating such a nonlinearity. A simple, yet robust, on-line adaptive algorithm is proposed to identify the free-play parameters, i.e. free-play width, the equivalent control stiffness and friction. The procedure is then coupled to an immersion and invariance control law to drastically reduce possible residual closed-loop limit cycle oscillations due to the free-play nonlinearity. Within such a framework, the so chosen compensation technique can be interpreted as a control augmentation, easily extendable to multiple control surfaces. The methodology is then verified on a four-degree-of-freedom airfoil in a transonic regime, characterized by highly nonlinear unsteady aerodynamic loads, producing significant shock motions and large limit cycles, at a relatively high frequency. The presence of both aerodynamic and structural nonlinearities makes such a system bistable, leading to complex responses dependent on the initial conditions and the input used to excite the system. The effective suppression of these auto-induced vibrations becomes even more challenging because the limit cycle oscillations generated by different sources are characterized by differing amplitudes and frequencies.


2013 ◽  
Vol 444-445 ◽  
pp. 738-742
Author(s):  
Yi Li ◽  
Jun Yang ◽  
Nan Chang

For both military and civil aircrafts are in service, there is always a variation of free play among the joint components of control due to wear. In fact, the variation of free play is an uncertain parameter. In this paper analytical procedure was developed basing on Nastran, which can quantify uncertainties in the complicated swept wing with control surface and gives the quantificational risk information about nonlinear aeroelstic stability in the practice.


Sign in / Sign up

Export Citation Format

Share Document