scholarly journals Implicit Navier-Stokes computations of unsteady flows using subiteration methods

1996 ◽  
Author(s):  
S. De Rango ◽  
D. Zingg
Keyword(s):  
2003 ◽  
Vol 125 (1) ◽  
pp. 25-32 ◽  
Author(s):  
W. Ning ◽  
Y. S. Li ◽  
R. G. Wells

A multistage frequency domain (time-linearized/nonlinear harmonic) Navier-Stokes unsteady flow solver has been developed for predicting unsteady flows induced by bladerow interactions. In this paper, the time-linearized option of the solver has been used to analyze unsteady flows in a subsonic turbine test stage and the DLR transonic counter-rotating shrouded propfan. The numerical accuracy and computational efficiency of the time-linearized viscous methods have been demonstrated by comparing predictions with test data and nonlinear time-marching solutions for these two test cases. It is concluded that the development of efficient frequency domain approaches enables unsteady flow predictions to be used in the design cycles to tackle aeromechanics problems.


Author(s):  
Pengcheng Du ◽  
Fangfei Ning

Time periodical unsteady flows are typical in turbomachinery. Simulating such flows using conventional time marching approach is most accurate but extremely time consuming. In order to achieve a better balance between accuracy and computational expenses, a cubic-spline based time collocation method is proposed. In this method, the time derivatives in the Navier-Stokes equations are obtained by using the differential quadrature method, in which the periodical flow variables are approximated by cubic-splines. Thus, the computation of a time-periodical flow is substituted by several coupled quasi-steady flow computations at sampled instants. The proposed method is then validated against several typical turbomachinery periodical unsteady flows, i.e., transonic compressor rotor flows under circumferential inlet distortions, single stage rotor-stator interactions and IGV-rotor interactions. The results show that the proposed cubic-spline based time collocation method with appropriate time sampling can well resolve the dominant unsteady effects, whilst the computational expenses are kept much less than the traditional time-marching simulation. More importantly, this paper provides a framework on the basis of time collocation method in which one may choose more compatible test functions for the concerned specific unsteady flows so that the better modeling of the flows can be expected.


2000 ◽  
Vol 123 (3) ◽  
pp. 680-685 ◽  
Author(s):  
L. He ◽  
K. Sato

A three-dimensional incompressible viscous flow solver of the thin-layer Navier-Stokes equations was developed for the unsteady turbomachinery flow computations. The solution algorithm for the unsteady flows combines the dual time stepping technique with the artificial compressibility approach for solving the incompressible unsteady flow governing equations. For time accurate calculations, subiterations are introduced by marching the equations in the pseudo-time to fully recover the incompressible continuity equation at each real time step, accelerated with a multi-grid technique. Computations of test cases show satisfactory agreements with corresponding theoretical and experimental results, demonstrating the validity and applicability of the present method to unsteady incompressible turbomachinery flows.


Author(s):  
W. Ning ◽  
Y. S. Li ◽  
R. G. Wells

A multistage frequency domain (time-linearized/nonlinear harmonic) Navier-Stokes unsteady flow solver has been developed for predicting unsteady flows induced by bladerow interactions. In this paper, the time-linearized option of the solver has been used to analyze unsteady flows in a subsonic turbine test stage and the DLR transonic counter-rotating shrouded propfan. The numerical accuracy and computational efficiency of the time-linearized viscous methods have been demonstrated by comparing predictions with test data and nonlinear time-marching solutions for these two test cases. It is concluded that the development of efficient frequency domain approaches enables unsteady flow predictions to be used in the design cycles to tackle aeromechanics problems.


2013 ◽  
Vol 136 (4) ◽  
Author(s):  
Pengcheng Du ◽  
Fangfei Ning

Time-periodical unsteady flows are typical in turbomachinery. Simulating such flows using a conventional time marching approach is the most accurate but is extremely time consuming. In order to achieve a better balance between accuracy and computational expenses, a cubic-spline-based time collocation method is proposed. In this method, the time derivatives in the Navier–Stokes equations are obtained by using the differential quadrature method, in which the periodical flow variables are approximated by cubic splines. Thus, the computation of a time-periodical flow is substituted by several coupled quasi-steady flow computations at sampled instants. The proposed method is then validated against several typical turbomachinery periodical unsteady flows, i.e., transonic compressor rotor flows under circumferential inlet distortions, single stage rotor–stator interactions, and IGV–rotor interactions. The results show that the proposed cubic-spline-based time collocation method with appropriate time sampling can well resolve the dominant unsteady effects, while the computational expenses are kept much less than the traditional time-marching simulation. More importantly, this paper provides a framework on the basis of a time collocation method in which one may choose more compatible test functions for the concerned specific unsteady flows so that better modeling of the flows can be expected.


Sign in / Sign up

Export Citation Format

Share Document