A part-time master's course incorporating aircraft design, build and flight test

1997 ◽  
Author(s):  
J. Fielding ◽  
R. Battoo ◽  
J. Fielding ◽  
R. Battoo
2003 ◽  
Author(s):  
Gregory Page ◽  
Chris Bovias ◽  
Michael Selig ◽  
Stephen Brock
Keyword(s):  

2018 ◽  
Vol 233 ◽  
pp. 00001
Author(s):  
Dominique Paul Bergmann ◽  
Jan Denzel ◽  
Andreas Strohmayer

Today new technologies are available, which can be decisive for the success of future aircraft design. However, the gap between conventional designs and new visions often comes with a high financial risk. This complicates the integration of innovations significantly. The “Flightpath 2050 Europe’s Vision for Aviation” asks for new aircraft concepts and configurations to meet future requirements such as emission (CO2, NOx), noise and fuel consumption reduction. Scaled UAS are one way for getting new configurations and technologies into flight test while reducing the risk of exploding costs. UAS are cost-efficient test platform systems for two main tasks of future aircraft tests: Testing new configurations and advancing new aircraft systems and technologies from upstream research to TRL5-6. UAS can represent a connection between innovative research and flight demonstration. This paper focuses on the UAS as an innovative test platform and a tool for feasibility demonstration as well as its impact on new technologies and the implementation of innovative concepts. An example of a UAS test platform is given in the paper based on a 33,3% scale model of the e-Genius. It is developed as flying wind tunnel in order to better understand the effects of configuration changes on flight performance.


2007 ◽  
Vol 111 (1126) ◽  
pp. 761-776 ◽  
Author(s):  
H. Smith

Abstract Key issues relating to the Supersonic Business Jet (SBJ) concept are reviewed with the intent to assess the readiness of enabling technologies and hence the concept itself. The multidisciplinary nature of aircraft design precludes an in-depth analysis of each specific aspect, which could individually be the subject of a separate discipline review, hence an overview is presented. The review looks at the market, environmental issues, with particular reference to the sonic boom phenomenon & solutions, technological issues, including prediction methods, flight testing, systems, certification and interested aerospace companies and design organisations. It is apparent that the need to reduce the sonic boom signature is vital if the vehicle is to be permitted to operate over land and hence be economically viable. It is clear that sonic boom acceptability requirements must be set if resources are to be effectively focused and designs are to converge. Despite this challenge, considerable investment is aimed at de-risking many of the enabling technologies and raising readiness levels. Many technologies are moving beyond theoretical and numerical analysis into the experimental and flight test domains. Collaboration between the civil and military sectors is increasing. Clearly, supersonic air travel is not an efficient means of personal conveyance; however, concerns for the environment are difficult to balance against the ‘value of time’ benefits offered by the SBJ concept. Air travel, of which this is a specialised form, is important to the global economy. Continued effort in the areas of human factors, customer demand and certification & requirements would be beneficial.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012075
Author(s):  
Xi Feng ◽  
Yafeng Zhang

Abstract An improved immune genetic algorithm is used to design and optimize the wing structure parameters of a competition aircraft. According to the requirements of aircraft design, multi-objective optimization index is established. On this basis, the basic steps of using immune algorithm to optimize the main design parameters of aircraft wing structure are proposed, and the optimization of the wing parameters of a competition aircraft is used as an example for simulation calculation. The design variables in the optimization are the size of the wing components, and the optimization goal is to minimize the weight of the wing and the maximum deformation of the wing structure. Research shows that compared with traditional optimization methods; the improved immune genetic algorithm is a very effective optimization method. At the same time, a prototype is made to check the validity and feasibility of the design. Flight test results show that the optimization method is very effective. Although the method is proposed for competition aircraft, it is also applicable to other types of aircraft.


1998 ◽  
Author(s):  
Gregory Page ◽  
Chris Bovias ◽  
Michael Selig ◽  
Robert Paczula

2000 ◽  
Author(s):  
Gregory S. Page ◽  
Chris Bovias ◽  
Michael Selig
Keyword(s):  

2002 ◽  
Author(s):  
Gregory Page ◽  
Chris Bovias ◽  
Michael Selig ◽  
Stephen Brock

Sign in / Sign up

Export Citation Format

Share Document