Bleed of supersonic boundary-layer flow through rows of normal and inclined holes

Author(s):  
A. Flores ◽  
T. Shih ◽  
D. Davis ◽  
B. Willis
1995 ◽  
Vol 300 ◽  
pp. 265-285 ◽  
Author(s):  
K. W. Cassel ◽  
A. I. Ruban ◽  
J. D. A. Walker

Separation of a supersonic boundary layer (or equivalently a hypersonic boundary layer in a region of weak global interaction) near a compression ramp is considered for moderate wall temperatures. For small ramp angles, the flow in the vicinity of the ramp is described by the classical supersonic triple-deck structure governing a local viscous-inviscid interaction. The boundary layer is known to exhibit recirculating flow near the corner once the ramp angle exceeds a certain critical value. Here it is shown that above a second and larger critical ramp angle, the boundary-layer flow develops an instability. The instability appears to be associated with the occurrence of inflection points in the streamwise velocity profiles within the recirculation region and develops as a wave packet which remains stationary near the corner and grows in amplitude with time.


1983 ◽  
Vol 105 (3) ◽  
pp. 452-456
Author(s):  
H. O. Jeske ◽  
I. Teipel

The transonic flow in a diffuser of a centrifugal compressor with high pressure ratio has been analyzed by a numerical procedure. The method consists of an inviscid calculation of the pressure field in the vaned diffuser and of a determination of the boundary layer flow along the blades. The diffuser has been equipped with curved vanes, and only the flow through one channel is considered. The two-dimensional pressure distribution has been calculated by a time-dependent finite difference scheme. The boundary layer flow has been determined by different integral methods with special attention concerning the shock-boundary-layer interaction. Finally, the numerical results are compared with experiments, and the agreement is satisfactory.


2021 ◽  
Vol 8 (65) ◽  
pp. 15142-15146
Author(s):  
Ram Naresh Singh

In this paper we study a problem of the boundary layer flow through a porous media in the presence of heat transfer. Here we consider high porosity bounded by a semi-infinite horizontal plate. The main aim of this study is to point out local similarity transformations for the boundary layer flow, through a homogeneous porous medium. Here we applying finite difference schemes to find out the numerical solutions of the problem. The free stream velocity and the temperature far away from the plate are exponential function of variables.


Sign in / Sign up

Export Citation Format

Share Document