vaned diffuser
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 56)

H-INDEX

25
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 583
Author(s):  
Suleyman Emre Ak ◽  
Sertac Cadirci

In this study, the effect of suction flow control on a centrifugal compressor at operation and stall flow rates was investigated using computational fluid dynamics (CFD). The compressor geometry was reconstructed from available open source profile data and the CFD analyses have been performed on this geometry using the appropriate mesh. To validate the CFD results, the compressor performance line was acquired and compared with the experimental results obtained at the design rotational speed. Then, suction flow control was employed at various suction slot positions with different suction flow rates to improve the performance of the compressor at operation and stall flow rates. As a result of the suction flow control trials, 0.85% increase in pressure ratio and 0.8% increase in adiabatic efficiency were achieved while the compressor was running at operation flow rate. The performance improvements corresponding to the stall flow rate of the compressor were 2.5% increase in pressure ratio and 2% increase in adiabatic efficiency.


Author(s):  
Bing Qiao ◽  
Yaping Ju ◽  
Chuhua Zhang

Abstract Negative flow from the outlet through the volute, diffuser, and impeller to the inlet of the centrifugal compressor can occur continuously as a result of system accidents. A physical comprehension of negative flow dynamics is crucial in evaluating the compressor characteristics under abnormal working conditions, and is also important in exploring the compressor aerodynamics over the entire flow range. However, limited research on the negative flow dynamics in centrifugal compressors, particularly with the consideration of vaned diffusers and volutes, can be found. This study aims to determine the compressor characteristics, including the negative flow rates of a centrifugal compressor, and to clarify the negative flow mechanism under the interaction of the volute, diffuser, and impeller. The last stage of a four-stage centrifugal compressor, including an internal volute, a vaned diffuser, and a closed impeller was simulated under both positive and negative flow conditions using a computational fluid dynamics (CFD) model. The results show that the pressure ratio-negative flow characteristic is almost matched with a parabolic curve. At negative flow rates, the backflow generated on the hub and shroud sides in the impeller expands upstream and causes flow separation in the diffuser. The negative flow enters the impeller at a large incidence angle and results in jet wall impingement on the pressure surface, flow spillage over the trailing edge, and flow separation near the suction surface. The impeller partially acts as a turbine impeller and performs negative work on the fluid. This work is of scientific significance to enrich the compressor aerodynamics in accident scenarios and of engineering value to improve the advanced design of compressor protection systems.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 266
Author(s):  
Zhaoheng Lu ◽  
Ran Tao ◽  
Faye Jin ◽  
Puxi Li ◽  
Ruofu Xiao ◽  
...  

A large-scale, vaned-voluted centrifugal pump can be applied as the key component in water-transfer projects. Pressure pulsation will be an important factor in affecting the operation stability. This paper researches the propagation and spatial distribution law of blade passing frequency (BPF) and its harmonics on the design condition by numerical simulation. Experimental and numerical monitoring is conducted for pressure pulsation on four discrete points in the vaneless region, which shows that the BPF is dominant. The pulsation tracking network (PTN) is applied to research propagation law and spatial distribution law. It provides a reference for frequency domain information and visualization vaned diffuser. The amplitude of BPF and its harmonics decays rapidly in the vaneless region. BPF and BPF’s harmonics influence each other. BPF has local enhancement in the vaneless region when its harmonics attenuate. In the vaned diffuser, the pulsation amplitude of BPF attenuates rapidly, but the local high-pressure pulsation amplitude can be found on the vane blade concave side because of obstruction and accumulation of the vaned diffuser. In the volute, the pulsation amplitude of BPF is low with the decelerating attenuation. This study provides an effective method for understanding the pressure pulsation law in turbomachinery and other engineering flow cases.


Author(s):  
Qiang Pan ◽  
Weidong Shi ◽  
ZHANG Desheng ◽  
Bart van Esch

Abstract The primary cause of mechanical-related fish injury and mortality in turbomachinery is blade strike. Fish contained in the flow may strike with the rotor blades and the fixed diffuser vanes, the latter being a non-negligible factor causing fish damage in pump system. In this study, an experiment-based correlation of fish mutilation ratio acts as critical strike velocity. The relation between strike damage in a vaned diffuser and the theoretical pump head is presented as a function of specific speed. As an example, a vaned diffuser is designed for a single-bladed, mixed-flow impeller with the purpose of improving fish friendliness. This pump can be scaled to operate with a head up to 14 m at peak efficiency, without fish damage in the diffuser. Subsequently, experiments are conducted to show the retained pump performance as well as the great improvement of fish friendliness.


Author(s):  
Qingkuo Li ◽  
Yingjie Zhang ◽  
Yi Wang ◽  
Ge Han ◽  
Yanfeng Zhang ◽  
...  

Vaned diffuser inlet flow uniform is challenging when the impeller is throttled to stall. In this study, we extend the stable operating range of the compressor by improving the uniform flow of the diffuser inlet. First, a numerical investigation of a transonic centrifugal compressor with a vaned diffuser is presented and compared against test data. Then, a new diffuser parameterization method is pro- posed, and the throat feature of a pipe diffuser is successfully applied to parameterized vane diffusers. The influence of the throat length and divergence angle of the diffuser on the performance of the centrifugal compressor is studied via steady and non-linear harmonic simulations. Throat length delays the time of fluid pressurization and accommodates large flow instabilities from upstream—this widens the stall margin but increases mixing loss. Divergence angle affects compressor performance. Stage peak efficiency increases by about 0.58% as the divergence angle increases from 3.79° to 5.79° but drops to about 2.46% as the divergence angle further increases from 5.79° to 11.79°. This is because the boundary layers in the diffuser channel thicken with increasing divergence angle; additionally, the fluid near the hub-pressure side first becomes unstable, then flow separation occurs along the flow direction, which results in a large flow loss. Detailed performance maps of centrifugal compressors with different throat lengths and divergence angles are given to provide a reference for designing transonic centrifugal compressors.


2021 ◽  
Vol 11 (15) ◽  
pp. 6980
Author(s):  
Shuai Li ◽  
Yan Liu ◽  
Hongkun Li ◽  
Mohammad Omidi

The influence of different diffuser configurations on the flow stability and aerodynamic performance of a centrifugal compressor stage with a mass flow coefficient of 0.196 is numerically investigated. Research results show that the performance of a traditional full-height vaned diffuser (TVD) deteriorates rapidly, and a shroud-side partial vaned diffuser (SVD) displays better adaptability in off-design conditions. SVD can suppress the development of vortices generating at the diffuser leading-edge. Therefore, it can reduce the flow loss inside the stage and improve the flow stability of the stage at low mass flow rates. The unsteady analysis for TVD and SVD shows that the stall cell propagates at about 35.7% of impeller rotational speed in the semi-vaneless space and diffuser passages. Furthermore, the internal flow in TVD and SVD is studied by employing the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) methods. The flow loss and instability mechanism in the stage are consequently revealed more comprehensively.


2021 ◽  
Author(s):  
Lee Gibson ◽  
Stephen Spence ◽  
Sung In Kim ◽  
Charles Stuart ◽  
Martin Schwitzke ◽  
...  

2021 ◽  
Author(s):  
Kazutoyo Yamada ◽  
Kosuke Kubo ◽  
Kenichiro Iwakiri ◽  
Yoshihiro Ishikawa ◽  
Hirotaka Higashimori

Abstract This paper discusses the unsteady effects associated with the impeller/diffuser interaction on the internal flow field and aerodynamic performance of a centrifugal compressor. In centrifugal compressors with a vaned diffuser, the flow field is inherently unsteady due to the influence of interaction between the impeller and the diffuser, and the unsteadiness of the flow field can often have a great influence on the aerodynamic performance of the compressor. Especially in high-load compressors, it is considered that large unsteady effects are produced on the compressor performance with a strong flow unsteadiness. The unsteady effect on aerodynamic performance of the compressor has not been fully revealed yet, and sometimes the steady-state RANS simulation finds it difficult to predict the compressor performance. In this study, numerical simulations have been conducted for a transonic centrifugal compressor with a vaned diffuser. The unsteady effects were clarified by comparing the numerical results between a single-passage steady-state RANS analysis and a full-annulus unsteady RANS analysis. The comparison of simulation results showed the difference in entropy generation in the impeller. The impingement of diffuser shock wave with the impeller pressure surface brought about a cyclic increase in the blade loading near the impeller trailing edge. Accordingly, with increasing tip leakage flow rate, a second tip leakage vortex was newly generated in the aft part of the impeller, which resulted in additional unsteady loss generation inside the impeller.


Author(s):  
Yongshun Zeng ◽  
Zhifeng Yao ◽  
Ran Tao ◽  
Weichao Liu ◽  
Ruofu Xiao

Abstract A vertical centrifugal pump with a vaned diffuser is very attractive in the field of long-distance water supply. Excessive pressure fluctuations in the vaneless region due to rotor stator interaction (RSI) need careful evaluation. In the present investigation, the hydraulic performance and pressure fluctuation characteristics of a vertical centrifugal pump with three different lean modes of the blade trailing edge were quantitatively analyzed by comparison experiments, using the same test rig. Results showed that the pressure fluctuation level was the highest in the vaneless region, closest to the volute tongue, and increased as the flowrate deviated from the design flowrate. The lean mode of the blade trailing edge was found to have a slight influence on hydraulic performance, and the relative deviation of experimental specific speeds with three different lean modes was within 6%. The influence of the lean mode of the blade trailing edge on the pressure fluctuation level was experimentally verified for the first time. In particular, the flowrate-averaged peak-to-peak value of pressure fluctuation with the positive lean mode (PLM) was 62% of the corresponding value with the zero lean mode (ZLM), while no significant improvement was observed for the negative lean mode (NLM). The flow mechanism behind this may be explained as a weakening of the jet-wake flow pattern with PLM.


Sign in / Sign up

Export Citation Format

Share Document