high pressure ratio
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
pp. 1-51
Author(s):  
Yingjie Zhang ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Ziqing Zhang ◽  
Xu Dong ◽  
...  

Abstract This paper describes the stall mechanism in an ultra-high-pressure-ratio centrifugal compressor. A model comprising all impeller and diffuser blade passages is used to conduct unsteady simulations that trace the onset of instability in the compressor. Backward-traveling rotating stall waves appear at the inlet of the radial diffuser when the compressor is throttled. Six stall cells propagate circumferentially at approximately 0.7% of the impeller rotation speed. The detached shock of the radial diffuser leading edge and the number of stall cells determine the direction of stall propagation, which is opposite to the impeller rotation direction. Dynamic mode decomposition is applied to instantaneous flow fields to extract the flow structure related to the stall mode. This shows that intensive pressure fluctuations concentrate in the diffuser throat as a result of changes in the detached shock intensity. The diffuser passage stall and stall recovery are accompanied by changes in incidence angle and shock wave intensity. When the diffuser passage stalls, the shock-induced boundary-layer separation region near the diffuser vane suction surface gradually expands, increasing the incidence angle and decreasing the shock intensity. The shock is pushed from the diffuser throat toward the diffuser leading edge. When the diffuser passage recovers from stall, the shock wave gradually returns to the diffuser throat, with the incidence angle decreasing and the shock intensity increasing. Once the shock intensity reaches its maximum, the diffuser passage suffers severe shock-induced boundary-layer separation and stalls again.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Weilin Yi ◽  
Hongliang Cheng

The optimization of high-pressure ratio impeller with splitter blades is difficult because of large-scale design parameters, high time cost, and complex flow field. So few relative works are published. In this paper, an engineering-applied centrifugal impeller with ultrahigh pressure ratio 9 was selected as datum geometry. One kind of advanced optimization strategy including the parameterization of impeller with 41 parameters, high-quality CFD simulation, deep machine learning model based on SVR (Support Vector Machine), random forest, and multipoint genetic algorithm (MPGA) were set up based on the combination of commercial software and in-house python code. The optimization objective is to maximize the peak efficiency with the constraints of pressure-ratio at near stall point and choked mass flow. Results show that the peak efficiency increases by 1.24% and the overall performance is improved simultaneously. By comparing the details of the flow field, it is found that the weakening of the strength of shock wave, reduction of tip leakage flow rate near the leading edge, separation region near the root of leading edge, and more homogenous outlet flow distributions are the main reasons for performance improvement. It verified the reliability of the SVR-MPGA model for multiparameter optimization of high aerodynamic loading impeller and revealed the probable performance improvement pattern.


2020 ◽  
Vol 33 (6) ◽  
pp. 04020072
Author(s):  
Wenchao Zhang ◽  
Xiao He ◽  
Baotong Wang ◽  
Zhenzhong Sun ◽  
Xinqian Zheng

2020 ◽  
Vol 105 ◽  
pp. 106036
Author(s):  
Yingjie Zhang ◽  
Ziqing Zhang ◽  
Xu Dong ◽  
Ge Han ◽  
Yanfeng Zhang ◽  
...  

Author(s):  
Senthil Krishnababu ◽  
Vili Panov ◽  
Simon Jackson ◽  
Andrew Dawson

Abstract In this paper, research that was carried out to optimise an initial variable guide vane schedule of a high-pressure ratio, multistage axial compressor is reported. The research was carried out on an extensively instrumented scaled compressor rig. The compressor rig tests carried out employing the initial schedule identified regions in the low speed area of the compressor map that developed rotating stall. Rotating stall regions that caused undesirable non-synchronous vibration of rotor blades were identified. The variable guide vane schedule optimisation carried out balancing the aerodynamic, aero-mechanical and blade dynamic characteristics gave the ‘Silent Start’ variable guide vane schedule, that prevented the development of rotating stall in the start regime and removed the non-synchronous vibration. Aerodynamic performance and aero-mechanical characteristics of the compressor when operated with the initial schedule and the optimised ‘Silent Start’ schedule are compared. The compressor with the ‘Silent Start’ variable guide vane schedule when used on a twin shaft engine reduced the start time to minimum load by a factor of four and significantly improved the operability of the engine compared to when the initial schedule was used.


Author(s):  
Andrés Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Lukas Benjamin Inhestern ◽  
Juan David Echavarría

Abstract In the application of turbocharging and organic Rankine cycles (ORCs) the radial turbine can operate at high pressure ratio leading to the presence of choking inside the turbine. Information in this map region is needed to estimate the overall machine performance and to achieve an optimum matching of engine-turbocharger or an integration into ORCs. As a preliminar study before doing experimental tests in a turbocharger gas stand and before starting modeling activities, 3D CFD simulations were run for this paper. The occurrence of choking in the stator passage, in the vaneless space and in the rotor passage is categorized and analyzed under different operating conditions and VGT openings. The appearance of the shock wave depends strongly of the stator vane position and pressure ratio. In the analyzed turbocharger VGT turbine no choking has been identified in the throat of the stator vanes. In technically relevant closed VGT position choking was identified in the vaneless space. Whereas at open vane position the shock wave appears at the rotor throat and the Mach number can increase from the blade tip to the hub or from the hub to the tip depending on the rotational speed. Furthermore, tip leakage flow plays an important role, being responsible of subsonic regions in the rotor outlet although a big percentage of the section is choked.


Author(s):  
Wenchao Zhang ◽  
Zhenzhong Sun ◽  
Baotong Wang ◽  
Xinqian Zheng

Abstract High performance centrifugal compressors with high pressure ratio are highly applied in turboshaft engines in order to obtain higher power-to-weight ratio and lower fuel consumption. The optimization of the aerodynamic configuration design of splitter blades is one of the effective ways to achieve higher efficiency. An in-house designed single-stage centrifugal compressor with a pressure ratio up to 12.0 is studied in this paper. By using a three-dimensional CFD (computational fluid dynamic) method, this paper investigates influences of the number of splitter blades and their leading edge position on the flow field characteristics and aerodynamic performance of the centrifugal compressor with ultra-high pressure ratio. Results show that three critical flow characteristics lead to severe losses in centrifugal compressor impeller when only full blades are applied. Those flow characteristics include the strong shock wave, the severe tip clearance flow at the inlet region and the severe flow separation at the rear region. Therefore, the inlet blade number should be reduced to decrease the loss caused by strong shock waves and tip clearance flow, while the outlet blade number should be sufficient enough to suppress flow separation. By optimizing the number and the leading edge position of splitters, the performance can be improved under the reduction of combined losses caused by shock waves, tip clearance flow and flow separation. When an aerodynamic configuration with single-splitters is used, numerical results indicate that the leading edge position of splitter blades should be located at 60% of the main blade chord length, and the centrifugal impeller isentropic efficiency with ultra-high pressure ratio can be increased from 82.4% (the aerodynamic configuration with only full blades) to 89.5%; when an aerodynamic configuration with double-splitters is used, the leading edge positions of middle and short splitter blades should be respectively located at 40% and 60% of the main blade chord length, and the impeller isentropic efficiency can be further improved to 90.9%.


Sign in / Sign up

Export Citation Format

Share Document