scholarly journals Unsteady separated flow simulations using a cluster of workstations

Author(s):  
Anirudh Modi ◽  
Lyle Long
1979 ◽  
Author(s):  
M. FRANCIS ◽  
J. KEESEE ◽  
J. LANG ◽  
G. SPARKS ◽  
G. SISSON

2014 ◽  
Vol 721 ◽  
pp. 182-186 ◽  
Author(s):  
Da Hai Luo ◽  
Chao Yan ◽  
Wei Lin Zheng ◽  
Wu Yuan

A new Partially Averaged Navier-Stokes (PANS) model is proposed with the aim of simulating unsteady separated flows at reasonable computational expense. The unresolved-to-total ratio of kinetic energy (fk) related to PANS method is taken as a spatially varying and dynamically updating parameter in the computations. Turbulent flow past a backward-facing step is chosen as a test case in an effort to evaluate the model performance. PANS computations are compared to the experimental data and the traditional Detached Eddy Simulations (DES), showing their excellent capability of resolving turbulent fluctuations. Boundary layer shielding technique is also introduced into the PANS approach and effectively improves the computational results.


2005 ◽  
Author(s):  
Hiroyuki Yoshikawa ◽  
Kimitake Ishikawa ◽  
Terukazu Ota

Numerical results of a three-dimensional unsteady separated flow and heat transfer in a sudden expansion rectangular channel are presented. A direct numerical simulation methodology was employed in the calculations using the finite difference method. Treated in the present study is a rectangular channel of aspect ratio AR = 4.0 and expansion ratio ER = 2.5 in a Reynolds number range from 200 to 1000. It is found that the flow becomes unsteady at Re = 400 and severely complicated at Re = 500 to 1000. The heat transfer characteristics are presented and discussed in relation to the flow ones.


Sign in / Sign up

Export Citation Format

Share Document