scholarly journals Soot surface growth in laminar hydrocarbon/air diffusion flames at atmospheric pressure

2001 ◽  
Author(s):  
A. El-Leathy ◽  
F. Xu ◽  
G. Faeth
2020 ◽  
Vol 194 ◽  
pp. 04054
Author(s):  
Bencheng Zhu ◽  
Yuhan Zhu ◽  
Jiajia Wu ◽  
Kun Lu ◽  
Yang Wang ◽  
...  

This article employs the CoFlame Code to investigate the effects of hydrogen addition to fuel on soot formation characteristics in laminar coflow methane/air diffusion flames at atmospheric pressure. Numerical calculations were carried out using a detailed C1-C2 gas phase reaction mechanism and a soot model consisting of two pyrene molecules colliding into a dimer as soot nucleation, hydrogen abstraction acetylene addition (HACA) and pyrene condensation as surface growth, and soot oxidation by O2, O and OH radicals. Calculations were conducted for five levels of hydrogen addition on volume basis. To quantify the chemical effect of hydrogen, additional calculations are performed for addition of inert pseudo-hydrogen (FH2). The addition of H2 or FH2 does not have a strong influence on flame temperature. The results confirm that hydrogen addition can inhibit soot formation in the methane/air diffusion flame by reducing both the nucleation and surface growth steps of soot formation process. The effect of FH2 addition on soot formation suppression is more remarkable than H2, indicating that the chemical effect of hydrogen added to methane prompts soot formation. The dilution effect of hydrogen addition on soot formation suppression is stronger than its chemical effect on soot formation enhancement the present findings are consistent with those of previous numerical studies.


2013 ◽  
Vol 668 ◽  
pp. 123-127 ◽  
Author(s):  
Xue Sun ◽  
D.W. Zhang ◽  
G.L. Ning

Soot formation and growth in propane/air diffusion flames in a wide range of mole ratio of propane to air from 0.01 to 0.1 have been studied experimentally and theoretically. The concentration of acetylene, soot yield and particle size have been measured and the growth of soot particle has been simulated from surface growth and nucleation processes. The rate coefficient of surface growth has been correlated with the mole ratio of propane to air and the comparisons of particle size between measured and calculated results have been made.


AIAA Journal ◽  
2003 ◽  
Vol 41 (5) ◽  
pp. 856-865 ◽  
Author(s):  
A. M. El-Leathy ◽  
F. Xu ◽  
C. H. Kim ◽  
G. M. Faeth

1993 ◽  
Vol 95 (1-2) ◽  
pp. 229-239 ◽  
Author(s):  
K SMYTH ◽  
J HARRINGTON ◽  
E JOHNSSON ◽  
W PITTS

Sign in / Sign up

Export Citation Format

Share Document