Adaptive reconfigurable control based on a reduced order system identification for flutter and aeroservoelastic instability suppression

Author(s):  
C. Nam ◽  
P. Chen ◽  
D. Liu ◽  
James Urnes ◽  
Rudy Yurkorvich
2015 ◽  
Vol 119 (1218) ◽  
pp. 961-980 ◽  
Author(s):  
P-D. Jameson ◽  
A. K. Cooke

Abstract Reduced order models representing the dynamic behaviour of symmetric aircraft are well known and can be easily derived from the standard equations of motion. In flight testing, accurate measurements of the dependent variables which describe the linearised reduced order models for a particular flight condition are vital for successful system identification. However, not all the desired measurements such as the rate of change in vertical velocity (Ẇ) can be accurately measured in practice. In order to determine such variables two possible solutions exist: reconstruction or differentiation. This paper addresses the effect of both methods on the reliability of the parameter estimates. The methods are used in the estimation of the aerodynamic derivatives for the Aerosonde UAV from a recreated flight test scenario in Simulink. Subsequently, the methods are then applied and compared using real data obtained from flight tests of the Cranfield University Jetstream 31 (G-NFLA) research aircraft.


Author(s):  
Sandesh G. Bhat ◽  
Thomas G. Sugar ◽  
Sangram Redkar

Abstract Ground Reaction Force (GRF) is an essential gait parameter. GRF analysis provides important information regarding various aspects of gait. GRF has been traditionally measured using bulky force plates within lab environments. There exist portable force sensing units, but their accuracy is wanting. Estimation of GRF has applications in remote wearable systems for rehabilitation, to measure performance in athletes, etc. This article explores a novel method for GRF estimation using the Lyapunov-Floquet (LF) and invariant manifold theory. We assume human gait to be a periodic motion without external forcing. Using time delayed embedding, a reduced order system can be reconstructed from the vertical GRF data. LF theory can be applied to perform system identification via Floquet Transition Matrix and the Lyapunov Exponents. A Conformal Map was generated using the Lyapunov Floquet Transformation that maps the original time periodic system on a linear Single Degree of Freedom (SDoF) oscillator. The response of the oscillator system can be calculated numerically and then remapped back to the original domain to get GRF time evolution. As an example, the GRF data from an optical motion capture system for two subjects was used to construct the reduced order model and system identification. A comparison between the original system and its reduced order approximation showed good correspondence.


Sign in / Sign up

Export Citation Format

Share Document