Estimating the laminar/turbulent transition location in three-dimensional boundary layers for CFD applications

Author(s):  
J. Crouch ◽  
I. Crouch ◽  
L. Ng
2020 ◽  
Author(s):  
A. V. Boiko ◽  
K. V. Demyanko ◽  
S. V. Kirilovskiy ◽  
Y. M. Nechepurenko ◽  
T. V. Poplavskaya

1994 ◽  
Vol 116 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Ryoji Kobayashi

The laminar-turbulent transition of three-dimensional boundary layers is critically reviewed for some typical axisymmetric bodies rotating in still fluid or in axial flow. The flow structures of the transition regions are visualized. The transition phenomena are driven by the compound of the Tollmien-Schlichting instability, the crossflow instability, and the centrifugal instability. Experimental evidence is provided relating the critical and transition Reynolds numbers, defined in terms of the local velocity and the boundary layer momentum thickness, to the local rotational speed ratio, defined as the ratio of the circumferential speed to the free-stream velocity at the outer edge of the boundary layer, for the rotating disk, the rotating cone, the rotating sphere and other rotating axisymmetric bodies. It is shown that the cross-sectional structure of spiral vortices appearing in the transition regions and the flow pattern of the following secondary instability in the case of the crossflow instability are clearly different than those in the case of the centrifugal instability.


2013 ◽  
Vol 432 ◽  
pp. 168-172
Author(s):  
Y. Zhou ◽  
Y.H. Fang

In this paper, the coupling method of PSE and FLUENT was experimented for predicting the laminar-turbulent transition. The software FLUENT was used to get the basic flow over a flat plate. A two-dimensional T-S wave and a pair of three-dimensional T-S waves were fed in at the entrance. The transition criterion was verified by DNS results. The availability of the coupling methodology has been evaluated.


Sign in / Sign up

Export Citation Format

Share Document