Design of a Hexapod Motion Cueing System for the NASA Ames Vertical Motion Simulator

Author(s):  
Sunjoo Advani ◽  
Dean Giovannetti ◽  
Muchael Blum
2017 ◽  
Vol 121 (1236) ◽  
pp. 163-190 ◽  
Author(s):  
P.M.T. Zaal ◽  
J.A. Schroeder ◽  
W.W. Chung

ABSTRACTThis paper adds data to help establish fidelity criteria to accompany the simulator motion system diagnostic test specified by the International Civil Aviation Organisation. Twelve airline transport pilots flew three tasks in the NASA Vertical Motion Simulator under four different motion conditions. The experiment used three different hexapod motion configurations, each with a different trade-off between motion filter gain and break frequency, and one large motion configuration that utilised as much of the simulator's motion space as possible. The motion condition significantly affected (1) pilot motion fidelity ratings, and sink rate and lateral deviation at touchdown for the approach and landing task, (2) pilot motion fidelity ratings, roll deviations, maximum pitch rate, and number of stick shaker activations in the stall task, and (3) heading deviation after an engine failure in the take-off task. Significant differences in pilot-vehicle performance were used to define initial objective motion cueing criteria boundaries. These initial fidelity boundaries show promise but need refinement.


1989 ◽  
Vol 33 (2) ◽  
pp. 86-90 ◽  
Author(s):  
Loran A. Haworth ◽  
Nancy Bucher ◽  
David Runnings

Simulation scientists continually pursue improved flight simulation technology with the goal of closely replicating the “real world” physical environment. The presentation/display of visual information for flight simulation is one such area enjoying recent technical improvements that are fundamental for conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for Nap-Of-the-Earth (NOE) helicopter flight simulation where the pilot maintains an “eyes-out” orientation to avoid obstructions and terrain. This paper elaborates on the visually-coupled Wide Field Of View Helmet Mounted Display (WFOVHMD) system technology as a viable visual display system for helicopter simulation. In addition the paper discusses research conducted on the NASA-Ames Vertical Motion Simulator that examined one critical research issue for helmet mounted displays.


Author(s):  
Bimal Aponso ◽  
Duc Tran ◽  
Jeffery Schroeder ◽  
Steven Beard

2021 ◽  
Vol 26 (6) ◽  
pp. 513-520
Author(s):  
Daoyang ZHU ◽  
Jun YAN ◽  
Shaoli DUAN

Motion cueing algorithms (MCA) are often applied in the motion simulators. In this paper, a nonlinear optimal MCA, taking into account translational and rotational motions of a simulator within its physical limitation, is designed for the motion platform aiming to minimize human’s perception error in order to provide a high degree of fidelity. Indeed, the movement sensation center of most MCA is placed at the center of the upper platform, which may cause a certain error. Pilot’s station should be paid full attention to in the MCA. Apart from this, the scaling and limiting module plays an important role in optimizing the motion platform workspace and reducing false cues during motion reproduction. It should be used along within the washout filter to decrease the amplitude of the translational and rotational motion signals uniformly across all frequencies through the MCA. A nonlinear scaling method is designed to accurately duplicate motions with high realistic behavior and use the platform more efficiently without violating its physical limitations. The simulation experiment is verified in the longitudinal/pitch direction for motion simulator. The result implies that the proposed method can not only overcome the problem of the workspace limitations in the simulator motion reproduction and improve the realism of movement sensation, but also reduce the false cues to improve dynamic fidelity during the motion simulation process.


SIMULATION ◽  
1976 ◽  
Vol 26 (2) ◽  
pp. 64-64 ◽  
Author(s):  
John C. Dusterberry

Sign in / Sign up

Export Citation Format

Share Document