RaNS Analysis of an Inboard Flatback Modification to the NREL Phase VI Rotor

Author(s):  
David Chao ◽  
Case van Dam
Keyword(s):  
2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


2021 ◽  
pp. 1-13
Author(s):  
Khaoula Qaissi ◽  
Omer A Elsayed ◽  
Mustapha Faqir ◽  
Elhachmi Essadiqi

Abstract A wind turbine blade has the particularity of containing twisted and tapered thick airfoils. The challenge with this configuration is the highly separated flow in the region of high twist. This research presents a numerical investigation of the effectiveness of a Vortex Trapping Cavity (VTC) on the aerodynamics of the National renewable Energy laboratory (NREL) Phase VI wind turbine. First, simulations are conducted on the S809 profile to study the fluid flow compared to the airfoil with the redesigned VTC. Secondly, the blade is simulated with and without VTC to assess its effect on the torque and the flow patterns. The results show that for high angles of incidence at Rec=106, the lift coefficient increases by 10% and the wake region appears smaller for the case with VTC. For wind speeds larger than 10 m/s, the VTC improves the torque by 3.9%. This is due to the separation that takes place in the vicinity of the VTC and leads to trapping early separation eddies inside the cell. These eddies roll up forming a coherent laminar vortex structure, which in turn sheds periodically out of the cell. This phenomenon favourably reshapes excessive flow separation, reenergizes the boundary layer and globally improves blade torque.


Author(s):  
Earl P. N. Duque ◽  
Michael D. Burklund ◽  
Wayne Johnson

A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80-by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.


2022 ◽  
Author(s):  
Gokul Subbian ◽  
Andrea Magrini ◽  
Ernesto Benini ◽  
Denis Buosi ◽  
Rita Ponza ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document