wake vortex
Recently Published Documents


TOTAL DOCUMENTS

577
(FIVE YEARS 77)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Author(s):  
KK Hon ◽  
Pak Wai Chan ◽  
Kevin C Y Chim ◽  
Ivan De Visscher ◽  
Ludovic Thobois ◽  
...  

2022 ◽  
Author(s):  
Nhan T. Nguyen ◽  
Graeson Bartolini ◽  
Joshua E. Baculi ◽  
Wendy Okolo ◽  
Juntao Xiong

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Weijun Pan ◽  
Haoran Yin ◽  
Yuanfei Leng ◽  
Xiaolei Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xin He ◽  
Yilong Ma ◽  
Hong Yang ◽  
Yaqing Chen

In order to relieve the stress caused by the surge of flight flow, Closely Spaced Parallel Runways (CSPRs) have been built in many hub airports, and a paired approach mode has been applied to CSPRs in some countries. This paper proposes a method for optimizing the wake separation between aircrafts which utilizes a paired approach, aiming at reducing longitudinal separation by using computational fluid dynamics technology. Firstly, the model of the wake vortex field of the paired lead aircraft is constructed. Secondly, the numerical simulation preparation for the characteristics of the wake vortex field is completed through the computational pretreatment of the model. Thirdly, a calculation model of wake safety interval based on paired approach operation is established. Finally, the proposed method shows its superiority comparing with other methods. This method realized visual analysis of wake vortex through optimization modeling based on computational fluid dynamics, contributing to increasing the capacity of the runway and improving the operation efficiency of an aerodrome.


2021 ◽  
Vol 933 ◽  
Author(s):  
Yong Cao ◽  
Tetsuro Tamura ◽  
Dai Zhou ◽  
Yan Bao ◽  
Zhaolong Han

This study topologically describes near-wall flows around a surface-mounted cylinder at a high Reynolds number ( $Re$ ) of $5\times 10^4$ and in a very thick boundary layer, which were partially measured or technically approximated from the literature. For complete and rational flow construction, we use high-resolution simulations and critical-point theory. The large-scale near-wake vortex is composed of two connected segments rolled up from the sides of the cylinder and from the free end. Another large-scale side vortex clearly roots on two notable foci on the lower side wall. In the junction region, the side vortex moves upwards with a curved trajectory, which induces the formation of nodes on the ground surface. In the free-end region, the side vortex is compressed, which results in a smaller trailing-edge vortex and its downstream movement. Only tip vortices are observed in the far wake. The origin of the tip vortices and their distinction from the near-wake vortex are discussed. Further analyses suggest that $Re$ independence should be treated with high caution when $Re$ increases from 500 to ${O}(10^4)$ . The occurrence of upwash flow behind the cylinder strongly depends on the increase in $Re$ , the mechanism of which is also provided. The separation–reattachment process in the junction region and the trailing-edge vortices are discovered only at a high $Re$ . The former should significantly affect the strength of the side vortex in the junction region and the latter should cause a sharp drop in pressure near the trailing edge.


2021 ◽  
Author(s):  
Hector Pérez-de-Tejada ◽  
Rickard Lundin

Measurements conducted with spacecraft around Venus and Mars have shown the presence of vortex structures in their plasma wake. Such features extend across distances of the order of a planetary radius and travel along their wake with a few minutes rotation period. At Venus, they are oriented in the counterclockwise sense when viewed from the wake. Vortex structures have also been reported from measurements conducted by the solar wind-Mars ionospheric boundary. Their position in the Venus wake varies during the solar cycle and becomes located closer to Venus with narrower width values during minimum solar cycle conditions. As a whole there is a tendency for the thickness of the vortex structures to become smaller with the downstream distance from Venus in a configuration similar to that of a corkscrew flow in fluid dynamics and that gradually becomes smaller with increasing distance downstream from an obstacle. It is argued that such process derives from the transport of momentum from vortex structures to motion directed along the Venus wake and that it is driven by the thermal expansion of the solar wind. The implications of that momentum transport are examined to stress an enhancement in the kinetic energy of particles that move along the wake after reducing the rotational kinetic energy of particles streaming in a vortex flow. As a result, the kinetic energy of plasma articles along the Venus wake becomes enhanced by the momentum of the vortex flow, which decreases its size in that direction. Particle fluxes with such properties should be measured with increasing distance downstream from Venus. Similar conditions should also be expected in vortex flows subject to pressure forces that drive them behind an obstacle.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi Ai ◽  
Yuanji Wang ◽  
Weijun Pan ◽  
Dingjie Wu

Along with the rapid improvement of the aviation industry, flight density also increases with the increase of flight demand, which directly leads to the increasingly prominent influence of wake vortex on flight safety and aviation control. In this paper, we propose a new joint framework—a deep learning framework—based on multisensor fusion information to address the detection and identification of wake vortices in the near-Earth phase. By setting multiple Doppler lidar in near-Earth flight areas at different airports, a large number of accurate wind field data are captured for wake vortex detection. Meanwhile, the airport surveillance radar is used to locate the wake vortex. In the deep learning framework, an end-to-end CNN-LSTM model has been employed to identify the airplane wake vortex from the data detected by Doppler lidar and the airport surveillance radar. The variables including the wind field matrix, positioning matrix, and the variance sequence are used as inputs to the CNN channel and LSTM channel. The identification and location information of the wake vortex in the wind field image will be output by the framework. Experiments show that the joint framework based on a multisensor possesses stronger ability to capture local feature and sequence feature than the traditional CNN or LSTM model.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3108
Author(s):  
Seyedeh Fatemeh Nabaei ◽  
Hossein Afzalimehr ◽  
Jueyi Sui ◽  
Bimlesh Kumar ◽  
Seyed Hamidreza Nabaei

In the present experimental study, the effect of vegetation on flow structure and scour profile around a bridge abutment has been investigated. The vegetation in the channel bed significantly impacted the turbulent statistics and turbulence anisotropy. Interestingly, compared to the channel without vegetation, the presence of vegetation in the channel bed dramatically reduced the primary vortex, but less impacts the wake vortex. Moreover, the tangential and radial velocities decreased with the vegetation in the channel bed, while the vertical velocity (azimuthal angle > 90°) had large positive values near the scour hole bed. Results showed that the presence of the vegetation in the channel bed caused a noticeable decrease in the Reynolds shear stress. Analysis of the Reynolds stress anisotropy indicated that the flow had more tendency to be isotropic for the vegetated bed. Results have shown that the anisotropy profile changes from pancake-shaped to cigar-shaped in the un-vegetated channel. In contrast, it had the opposite reaction for the vegetated bed.


Sign in / Sign up

Export Citation Format

Share Document