Experimental Study of Flameless Combustion in Gas Turbine Combustors

Author(s):  
Guoqiang Li ◽  
Dragon Stankovic ◽  
Nick Overman ◽  
Michael Cornwell ◽  
Ephraim Gutmark ◽  
...  
1976 ◽  
Vol 19 (137) ◽  
pp. 1353-1359 ◽  
Author(s):  
Masashi KATSUKl ◽  
Yukio MIZUTANI ◽  
Ken-ichi SHIBUYA

Author(s):  
Yeshayahou Levy ◽  
G. Arvind Rao ◽  
Valery Sherbaum

Flameless combustion is one of the most promising technologies that can meet the stringent demands of reduced pollution and increased reliability in future gas turbine engines. Although this new combustion technology has been successfully applied to industrial furnaces, there are inherent problems that prevent application of this promising technology in a gas turbine combustor. One of the main problems is the need for recirculating large amount of burnt gases with low oxygen content, within limited volume, and over a wide range of operating conditions. In the present paper, thermodynamic analysis of a novel combustion methodology operating in the flameless combustion regime for a gas turbine combustor is carried out from the first principles, with an objective to reduce oxygen concentration and temperature in the primary combustion zone. The present analysis shows that unlike in the conventional gas turbine combustor, transferring heat from primary combustion zone to secondary (annulus) cooling air can substantially reduce oxygen concentration in reactants and the combustion temperature, thus reducing NOx formation by a large margin. In addition, to reduce the peak temperature, the proposed methodology is conceptualised / designed such that energy from fuel is released in two steps, hence reducing the peak flame temperature substantially. The new proposed methodology with internal conjugate heat transfer is compared vis-a`-vis to other existing schemes and the benefits are brought out explicitly. It is found that transferring heat from the combustion zone reduces oxygen concentration and increases carbon-dioxide concentration in the combustor, thus creating an environment conducive for flameless combustion. In addition, a schematic of a practical engineering design working on the new proposed methodology is presented. This new methodology, which calls for transfer of heat from the primary combustion zone to alternative air streams, is expected to change the way gas turbine combustors will be designed in the future.


2019 ◽  
Vol 35 (4) ◽  
pp. 839-849 ◽  
Author(s):  
Bernhard Semlitsch ◽  
Tom Hynes ◽  
Ivan Langella ◽  
Nedunchezhian Swaminathan ◽  
Ann P. Dowling

Author(s):  
Joseph Rabovitser ◽  
Stan Wohadlo ◽  
John M. Pratapas ◽  
Serguei Nester ◽  
Mehmet Tartan ◽  
...  

Paper presents the results from development and successful testing of a 200 kW POGT prototype. There are two major design features that distinguish POGT from a conventional gas turbine: a POGT utilizes a partial oxidation reactor (POR) in place of a conventional combustor which leads to a much smaller compressor requirement versus comparably rated conventional gas turbine. From a thermodynamic perspective, the working fluid provided by the POR has higher specific heat than lean combustion products enabling the POGT expander to extract more energy per unit mass of fluid. The POGT exhaust is actually a secondary fuel gas that can be combusted in different bottoming cycles or used as synthesis gas for hydrogen or other chemicals production. Conversion steps for modifying a 200 kW radial turbine to POGT duty are described including: utilization of the existing (unmodified) expander; replacement of the combustor with a POR unit; introduction of steam for cooling of the internal turbine structure; and installation of a bypass air port for bleeding excess air from the compressor discharge because of 45% reduction in combustion air requirements. The engine controls that were re-configured for start-up and operation are reviewed including automation of POGT start-up and loading during light-off at lean condition, transition from lean to rich combustion during acceleration, speed control and stabilization under rich operation. Changes were implemented in microprocessor-based controllers. The fully-integrated POGT unit was installed and operated in a dedicated test cell at GTI equipped with extensive process instrumentation and data acquisition systems. Results from a parametric experimental study of POGT operation for co-production of power and H2-enriched synthesis gas are provided.


Sign in / Sign up

Export Citation Format

Share Document