Trajectory Tracking Controller Design Using Neural Networks for Tiltrotor UAV

Author(s):  
Boo Min Kim ◽  
Kwang Chan Choi ◽  
Byoung Soo Kim
Author(s):  
Pouya Panahandeh ◽  
Khalil Alipour ◽  
Bahram Tarvirdizadeh ◽  
Alireza Hadi

Purpose Trajectory tracking is a common problem in the field of mobile robots which has attracted a lot of attention in the past two decades. Therefore, besides the search for new controllers to achieve a better performance, improvement and optimization of existing control rules are necessary. Trajectory tracking control laws usually contain constant gains which affect greatly the robot’s performance. Design/methodology/approach In this paper, a method based on neural networks is introduced to automatically upgrade the gains of a well-known trajectory tracking controller of wheeled mobile robots. The suggested method speeds up the convergence rate of the main controller. Findings Simulations and experiments are performed to assess the ability of the suggested scheme. The obtained results show the effectiveness of the proposed method. Originality/value In this paper, a method based on neural networks is introduced to automatically upgrade the gains of a well-known trajectory tracking controller of wheeled mobile robots. The suggested method speeds up the convergence rate of the main controller.


Author(s):  
Emre Sariyildiz ◽  
Rahim Mutlu ◽  
Chuanlin Zhang

This paper proposes a new active disturbance rejection (ADR) based robust trajectory tracking controller design method in state space. It can compensate not only matched but also mismatched disturbances. Robust state and control input references are generated in terms of a fictitious design variable, namely differentially flat output, and the estimations of disturbances by using differential flatness (DF) and disturbance observer (DOb). Two different robust controller design techniques are proposed by using Brunovsky canonical form and polynomial matrix form approaches. The robust position control problem of a two mass-spring-damper system is studied to verify the proposed ADR controllers.


Sign in / Sign up

Export Citation Format

Share Document