Comparison of Radiation Transport Codes for Solar Particle Events Space Environment

Author(s):  
Ram Tripathi ◽  
Lawrence Townsend ◽  
Tony Gabriel ◽  
Larry Pinsky ◽  
Tony Slaba ◽  
...  
Author(s):  
Ram Tripathi ◽  
Lawrence Townsend ◽  
Tony Gabriel ◽  
Lawrence PIinsky ◽  
Tony Slaba

Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Fahad A. Zaman ◽  
Lawrence W. Townsend

Solar particle events (SPEs) can pose serious threats for future crewed missions to the Moon. Historically, there have been several extreme SPEs that could have been dangerous for astronauts, and thus analyzing their potential risk on humans is an important step towards space exploration. In this work, we study the effects of a well-known SPE that occurred on 23 February 1956 on a mission in cis-Lunar space. Estimates of the proton fluence spectra of the February 1956 event were obtained from three different parameterized models published within the past 12 years. The studied geometry consists of a female phantom in the center of spherical spacecraft shielded by aluminum area densities ranging from 0.4 to 40 g cm−2. The effective dose, along with lens, skin, blood forming organs, heart, and central nervous system doses, were tallied using the On Line Tool for the Assessment of Radiation In Space (OLTARIS), which utilizes the High Z and Energy TRansport code (HZETRN), a deterministic radiation transport code. Based on the parameterized models, the results herein show that thicknesses comparable to a spacesuit might not protect against severe health consequences from a February 1956 category event. They also show that a minimum aluminum shielding of around 20 g cm−2 is sufficient to keep the effective dose and critical organ doses below NASA’s permissible limits for such event. In addition, except for very thin shielding, the input models produced results that were within good agreement, where the doses obtained from the three proton fluence spectra tended to converge with slight differences as the shielding thickness increases.


2020 ◽  
Author(s):  
Olga Malandraki ◽  
Bernd Heber ◽  
Patrick Kuehl ◽  
Marlon Núñez ◽  
Arik Posner ◽  
...  

<p>Solar Energetic Particles (SEPs), ranging in energy from tens of keV to a few GeV, constitute an important con-tributor to the characterization of the space environment. SEP radiation storms may have durations from a period of hours to days or even weeks and have a large range of energy spectrum profiles. They pose a threat to mod-ern technology strongly relying on spacecraft and are a serious radiation hazard to humans in space, and are additionally of concern for avionics and commercial aviation in extreme cases. The High Energy Solar Particle Events forecasting and Analysis (HESPERIA) project, supported by the HORIZON 2020 programme of the Eu-ropean Union, has furthered our prediction capability of high-energy SEP events by developing new European capabilities for SEP forecasting and warning, while exploiting novel as well as already existing datasets. The HESPERIA UMASEP-500 tool makes real-time predictions of the occurrence of >500 MeV and Ground Level Enhancement (GLE) events from the analysis of soft X-ray flux and high-energy differential proton flux measured by the GOES satellite network. Regarding the prediction of GLE events for the period 2000-2016, this tool had a Probability of Detection (POD) of 53.8% and a False Alarm Ratio (FAR) of 30.0%. For this period, the tool obtained an Advanced Warning Time (AWT) of 8 min taking as reference the alert time from the first NMstation; using the time of the warning issued by the GLE Alert Plus tool for the aforementioned period as reference, the tool obtained an AWT of 15 min (Núñez et al. 2017). Based on the Relativistic Electron Alert System for Exploration (REleASE) forecasting scheme (Posner, 2007), the HESPERIA REleASE tools generate real-time predictions of the proton flux (30-50 MeV) at the Lagrangian point L1, making use of relativistic electrons (v>0.9c) and near-relativistic (v<0.8c) electron measurements provided by the SOHO/EPHIN and ACE/EPAM experiments, respectively. Analysis of historic data from 2009 to 2016 has shown the HESPERIA REleASE tools have a low FAR (∼30%) and a high POD (63%). Both HESPERIA tools are operational through the project’s website (http://www.hesperia.astro.noa.gr) at the National Observatory of Athens and presented in the recently published book on 'Solar Particle Radiation Storms Forecasting and Analysis, The HESPERIA HORIZON 2020 Project and Beyond', edited by Malandraki and Crosby, Springer, Astrophysics and Space Sciences Library, 2018, freely available at https://www.springer.com/de/book/9783319600505. The HESPERIA tools have been selected as a top priority internationally by NASA/CCMC to be included in the simulations of the manned-mission to Mars by Johnson Space Center (ISEP project). The National Observatory of Athens participates in the ISEP project with a relevant contract.</p>


2017 ◽  
Author(s):  
Aleksandar Mishev ◽  
Leon Kocharov ◽  
S. Pohjolainen ◽  
M.J. Reiner ◽  
Jeongwoo Lee ◽  
...  

2011 ◽  
Vol 742 (2) ◽  
pp. 102 ◽  
Author(s):  
O. Adriani ◽  
G. C. Barbarino ◽  
G. A. Bazilevskaya ◽  
R. Bellotti ◽  
M. Boezio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document