Numerical Studies on Frequency Response to Mass Flow Rate Variations in a Hydromechanical Pulsator

Author(s):  
Madhanabharatam Balasubramanyam ◽  
David Lineberry ◽  
Chien Chen ◽  
Vladimir Bazarov
Author(s):  
Jeong-Il Park ◽  
Douglas E. Adams ◽  
Yoshinobu Ichikawa ◽  
Jacob Bayyouk

Linear acoustic plane wave theory and a four pole parameter formulation are used to derive and solve the governing inhomogeneous equation for the forced pressure response in the simplified manifold model. The equations for estimating gas pressure pulsations in the annular cavity connected to an anechoic inlet pipe are presented. Complicated interactions between multiple cylinder valve ports in the suction manifold produce unexpected changes in the frequency response conditions for changes in the operating speed, and hence, the flow rate characteristics through the valves. From the addition of the delayed time for opening valve in the mass flow rate profiles and the comparison of the gas pulsations from experiment with those from simulation, the maximum strokes of the piston and the delayed times for opening valve can be estimated without solving the valve dynamic and thermodynamic equations. By applying the mass flow rate sinks at each valve as identified, the correlation between analytical and experimental results is shown to be much better than if the idealized, kinematically obtained source functions are used instead.


2005 ◽  
Vol 127 (3) ◽  
pp. 405-418 ◽  
Author(s):  
S. Ray ◽  
B. Ünsal ◽  
F. Durst ◽  
Ö. Ertunc ◽  
O. A. Bayoumi

Pressure gradient driven, laminar, fully developed pulsating pipe flows have been extensively studied by various researchers and the data for the resultant flow field are available in a number of publications. The present paper, however, concentrates on related flows that are mass flow driven, i.e., the flows where the mass flow rate is prescribed as ṁ=ṁM+ṁAfm(t) and fm(t) is periodically varying in time. Sinusoidal and triangular mass flow rate pulsations in time are analytically considered in detail. Results of experimental investigations are presented and are complemented by data deduced from corresponding analytical and numerical studies. Overall, the results provide a clear insight into mass flow rate driven, laminar, fully developed pulsating pipe flow. To the best of the authors’ knowledge, flows of this kind have not been studied before experimentally, analytically and numerically.


Author(s):  
V.N. Petrov ◽  
◽  
V.F. Sopin ◽  
L.A. Akhmetzyanova ◽  
Ya.S. Petrova ◽  
...  

Author(s):  
Roberto Bruno Bossio ◽  
Vincenzo Naso ◽  
Marian Cichy ◽  
Boleslaw Pleszewski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document