Material Point Method with Least Squares Technique for Nonlinear Aeroelasticity and Fluid-Structure Interactions in ASTE-P Toolset

Author(s):  
Patrick Hu ◽  
Liping Xue ◽  
Ramji Kamakoti ◽  
Hongwu Zhao ◽  
Qingding Li ◽  
...  
Author(s):  
Shaolin Mao

Material point method (MPM) is a powerful tool to handle material large deformation, discontinuities, and material moving interfaces problems where typical finite element methods (FEMs) could be very expensive and frequently fail. Material point method, in essence, is a weak formulation of the Particle-in-cell (PIC) method which has been developed initially for fluid dynamic problems. Recent years have seen extensive development of algorithm and impressive applications of MPM in engineering problems. Compared to its big success in material and structure modeling, the application of MPM to multiphase flows and fluid-structure interactions (FSIs) problems is relative scarce, in particular, the studies of fluid-induced deformation and motion of solids are limited due to their highly computational cost. In this short paper we discuss the computational efficiency by combining MPM with the adaptive mesh refinement (AMR) techniques to simulate FSI problems. Several test cases of 2D and 3D fluid-solid coupling flow problems are simulated and analyzed. The comparison with previous simulation results is shown in detail.


Author(s):  
Xuchen Han ◽  
Theodore F. Gast ◽  
Qi Guo ◽  
Stephanie Wang ◽  
Chenfanfu Jiang ◽  
...  

2021 ◽  
Vol 112 ◽  
pp. 103904
Author(s):  
Fabricio Fernández ◽  
Jhonatan E.G. Rojas ◽  
Eurípedes A. Vargas ◽  
Raquel Q. Velloso ◽  
Daniel Dias

Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 8
Author(s):  
Chendi Cao ◽  
Mitchell Neilsen

Dam embankment breaches caused by overtopping or internal erosion can impact both life and property downstream. It is important to accurately predict the amount of erosion, peak discharge, and the resulting downstream flow. This paper presents a new model based on the material point method to simulate soil and water interaction and predict failure rate parameters. The model assumes that the dam consists of a homogeneous embankment constructed with cohesive soil, and water inflow is defined by a hydrograph using other readily available reach routing software. The model uses continuum mixture theory to describe each phase where each species individually obeys the conservation of mass and momentum. A two-grid material point method is used to discretize the governing equations. The Drucker–Prager plastic flow model, combined with a Hencky strain-based hyperelasticity model, is used to compute soil stress. Water is modeled as a weakly compressible fluid. Analysis of the model demonstrates the efficacy of our approach for existing examples of overtopping dam breach, dam failures, and collisions. Simulation results from our model are compared with a physical-based breach model, WinDAM C. The new model can capture water and soil interaction at a finer granularity than WinDAM C. The new model gradually removes the granular material during the breach process. The impact of material properties on the dam breach process is also analyzed.


Sign in / Sign up

Export Citation Format

Share Document