Simulating Composites Crush: From the Coupon Level to Full Vehicle Crashworthiness

Author(s):  
Kyle Indermuehle ◽  
Vladimir Sokolinsky ◽  
Graham Barnes
Author(s):  
Karim Hamza ◽  
Kazuhiro Saitou

This paper presents a new method for designing vehicle structures for crashworthiness using surrogate models and a genetic algorithm. Inspired by the classifier ensemble approaches in pattern recognition, the method estimates the crash performance of a candidate design based on an ensemble of surrogate models constructed from the different sets of samples of finite element analyses. Multiple sub-populations of candidate designs are evolved, in a co-evolutionary fashion, to minimize the different aggregates of the outputs of the surrogate models in the ensemble, as well as the raw output of each surrogate. With the same sample size of finite element analyses, it is expected the method can provide wider ranges potentially high-performance designs than the conventional methods that employ a single surrogate model, by effectively compensating the errors associated with individual surrogate models. Two case studies on simplified and full vehicle models subject to full-overlap frontal crash conditions are presented for demonstration.


Author(s):  
Alberto Parra ◽  
Dionisio Cagigas ◽  
Asier Zubizarreta ◽  
Antonio Joaquin Rodriguez ◽  
Pablo Prieto

Author(s):  
Yu Hsien Wu ◽  
Kumar Srinivasan ◽  
Steven Patterson ◽  
Emmanuel Bot

The transient thermal simulation is an important part of thermal management development for new vehicle architectures. Different techniques have been studied in the past to address this coupled conduction/convection/radiation problem. In order to fully capture the transient thermal behavior of various underhood and underbody components, it is also necessary to accurately model the thermal mass of each part and the thermal links between dissimilar materials. The paper will outline a new, efficient methodology for this type of thermal analysis that shows acceptable results for complex full vehicle thermal analysis without sacrificing accuracy. The methodology is based on approximating the transient convective field with intermittent steady state solutions. The paper will present results from this new approach and compare them with fully transient simulation results as well as experimental data. The new methodology can be optimized to significantly reduce simulation run times without sacrificing accuracy and to be more practical for application in the vehicle development cycle.


2017 ◽  
Vol 10 (1) ◽  
pp. 13-24
Author(s):  
Nantu Roy ◽  
Christian Scheiblegger ◽  
Jos Darling ◽  
Peter Pfeffer
Keyword(s):  

Author(s):  
László Takács ◽  
Ferenc Szabó

AbstractPolymer sandwich structures have high bending stiffness and strength and also low weight. Therefore, they are widely used in the transportation industry. In the conceptual design phase, it is essential to have a method to model the mechanical behavior of the sandwich and its adhesive joints accurately in full-vehicle scale to investigate different structure partitioning strategies. In this paper, a novel approach using finite element modeling is introduced. The sandwich panels are modeled with layered shells and the joint lines with general stiffness matrices. Stiffness parameters of the face-sheets and the core material are obtained via mechanical tests. Stiffness parameters of the joints are determined by using the method of Design of Experiments, where detailed sub-models of the joints serve as a reference. These models are validated with experimental tests of glass-fiber reinforced vinyl ester matrix composite sandwich structure with a foam core. By using two joint designs and three reference geometries, it is shown that the method is suitable to describe the deformation behavior in a full-vehicle scale with sufficient accuracy.


2021 ◽  
Author(s):  
Fanlin Zeng ◽  
Wei Li ◽  
Hao Zheng ◽  
Xuanquan Peng ◽  
Jie Zheng

Sign in / Sign up

Export Citation Format

Share Document