An Experimental Investigation on the Wake Interference of Multiple Wind Turbines in Atmospheric Boundary Layer Winds

Author(s):  
Ahmet Ozbay ◽  
Wei Tian ◽  
Zifeng Yang ◽  
Partha Sarkar ◽  
Hui Hu
2017 ◽  
Vol 158 ◽  
pp. 167-175 ◽  
Author(s):  
A. Korobenko ◽  
J. Yan ◽  
S.M.I. Gohari ◽  
S. Sarkar ◽  
Y. Bazilevs

2021 ◽  
Author(s):  
Etienne Cheynet ◽  
Martin Flügge ◽  
Joachim Reuder ◽  
Jasna B. Jakobsen ◽  
Yngve Heggelund ◽  
...  

Abstract. The paper presents the measurement strategy and dataset collected during the COTUR (COherence of TURbulence with lidars) campaign. This field experiment took place from February 2019 to April 2020 on the southwestern coast of Norway. The coherence quantifies the spatial correlation of eddies and is little known in the marine atmospheric boundary layer. The study was motivated by the need to better characterize the lateral coherence, which partly governs the dynamic wind load on multi-megawatt offshore wind turbines. During the COTUR campaign, the coherence was studied using land-based remote sensing technology. The instrument setup consisted of three long-range scanning Doppler wind lidars, one Doppler wind lidar profiler and one passive microwave radiometer. Both the WindScanner software and Lidar Planner software were used jointly to simultaneously orient the three scanner heads into the mean wind direction, which was provided by the lidar wind profiler. The radiometer instrument complemented these measurements by providing temperature and humidity profiles in the atmospheric boundary layer. The preliminary results show an undocumented variation of the lateral coherence with the distance from the coast. The scanning beams were pointed slightly upwards to record turbulence characteristics both within and above the surface layer, providing further insight on the applicability of surface-layer scaling to model the turbulent wind load on offshore wind turbines.


Author(s):  
Ahmet Ozbay ◽  
Wei Tian ◽  
Hui Hu

An experimental study was carried out to investigate the aeromechanics and wake characteristics of dual-rotor wind turbines (DRWTs) in either co-rotating or counter-rotating configuration, in comparison to those of a conventional single-rotor wind turbine (SRWT). The experiments were performed in a large-scale aerodynamic/atmospheric boundary layer (AABL) wind tunnel, available at Iowa State University with the oncoming atmospheric boundary-layer (ABL) airflows under neutral stability conditions. In addition to measuring the power output performance of DRWT and SRWT models, static and dynamic wind loads acting on those turbine models were also investigated. Furthermore, a high-resolution digital particle image velocimetry (PIV) system was used to quantify the flow characteristics in the near wakes of the DRWT and SRWT models. The detailed wake-flow measurements were correlated with the power outputs and wind-load measurement results of the wind-turbine models to elucidate the underlying physics to explore/optimize design of wind turbines for higher power yield and better durability.


Sign in / Sign up

Export Citation Format

Share Document