Absolute Orbit Determination and Gravity Field Recovery for 433 Eros Using Satellite-to-Satellite Tracking

Author(s):  
Jason Leonard ◽  
Brandon Jones ◽  
Eduardo Villalba ◽  
George Born
2018 ◽  
Author(s):  
Le Ren ◽  
Steffen Schön

Abstract. ESA's Swarm mission offers excellent opportunities to study the ionosphere and to bridge the gap in gravity field recovery between GRACE and GRACE-FO. In order to contribute to these studies, at IfE Hannover, a software based on Precise Point Positioning (PPP) batch least-squares adjustment is developed for kinematic orbit determination. In this paper, the main achievements are presented. The approach for the detection and repair of cycle slips caused by ionospheric scintillation is introduced, which is based on the Melbourne-Wübbena and ionosphere-free linear combination. The results show that around 95 % cycle slips can be repaired and the majority of the cycle slips occur on L2. After the analysis and careful preprocessing of the observations, one year kinematic orbits of Swarm satellites from Sept., 2015 to Aug., 2016 are computed with the PPP approach. The kinematic orbits are validated with the reduced-dynamic orbits published by ESA in Swarm Level 2 products and the SLR measurements. The differences between our kinematic orbits and ESA reduced-dynamic orbits are at the 1.5 cm, 1.5 cm and 2.5 cm level in the along, cross and radial track, respectively. Remaining systematics are characterised by spectral analyses. The external validation with SLR measurements shows rms errors at the 4 cm level. Finally, fully populated covariance matrices of the kinematic orbits obtained from 30 s, 10 s and 1 s data rate are discussed. It is shown that for data rates larger than 10 s, the correlation should be taken into account when using POD coordinates as input for the gravity field recovery.


2003 ◽  
Vol 31 (8) ◽  
pp. 1897-1903 ◽  
Author(s):  
P Moore ◽  
J.F Turner ◽  
Z Qiang

2021 ◽  
Vol 13 (9) ◽  
pp. 1766
Author(s):  
Igor Koch ◽  
Mathias Duwe ◽  
Jakob Flury ◽  
Akbar Shabanloui

During its science phase from 2002–2017, the low-low satellite-to-satellite tracking mission Gravity Field Recovery And Climate Experiment (GRACE) provided an insight into Earth’s time-variable gravity (TVG). The unprecedented quality of gravity field solutions from GRACE sensor data improved the understanding of mass changes in Earth’s system considerably. Monthly gravity field solutions as the main products of the GRACE mission, published by several analysis centers (ACs) from Europe, USA and China, became indispensable products for quantifying terrestrial water storage, ice sheet mass balance and sea level change. The successor mission GRACE Follow-On (GRACE-FO) was launched in May 2018 and proceeds observing Earth’s TVG. The Institute of Geodesy (IfE) at Leibniz University Hannover (LUH) is one of the most recent ACs. The purpose of this article is to give a detailed insight into the gravity field recovery processing strategy applied at LUH; to compare the obtained gravity field results to the gravity field solutions of other established ACs; and to compare the GRACE-FO performance to that of the preceding GRACE mission in terms of post-fit residuals. We use the in-house-developed MATLAB-based GRACE-SIGMA software to compute unconstrained solutions based on the generalized orbit determination of 3 h arcs. K-band range-rates (KBRR) and kinematic orbits are used as (pseudo)-observations. A comparison of the obtained solutions to the results of the GRACE-FO Science Data System (SDS) and Combination Service for Time-variable Gravity Fields (COST-G) ACs, reveals a competitive quality of our solutions. While the spectral and spatial noise levels slightly differ, the signal content of the solutions is similar among all ACs. The carried out comparison of GRACE and GRACE-FO KBRR post-fit residuals highlights an improvement of the GRACE-FO K-band ranging system performance. The overall amplitude of GRACE-FO post-fit residuals is about three times smaller, compared to GRACE. GRACE-FO post-fit residuals show less systematics, compared to GRACE. Nevertheless, the power spectral density of GRACE-FO and GRACE post-fit residuals is dominated by similar spikes located at multiples of the orbital and daily frequencies. To our knowledge, the detailed origin of these spikes and their influence on the gravity field recovery quality were not addressed in any study so far and therefore deserve further attention in the future. Presented results are based on 29 monthly gravity field solutions from June 2018 until December 2020. The regularly updated LUH-GRACE-FO-2020 time series of monthly gravity field solutions can be found on the website of the International Centre for Global Earth Models (ICGEM) and in LUH’s research data repository. These operationally published products complement the time series of the already established ACs and allow for a continuous and independent assessment of mass changes in Earth’s system.


Sign in / Sign up

Export Citation Format

Share Document