cycle slips
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 53)

H-INDEX

11
(FIVE YEARS 4)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 45
Author(s):  
Michał Brach

Global Navigation Satellite Systems (GNSS) are crucial elements used in forest inventories. Forest metrics modeling efficacy depends on the accuracy of determining sample plot locations by GNSS. As of 2021, the GNSS consists of 120 active satellites, ostensibly improving position acquisition in forest conditions. The main idea of this article was to evaluate GIS-class and geodetic class GNSS receivers on 33 control points located in the forest. The main assumptions were operating on four GNSS systems (GPS, GLONASS, Galileo, and BeiDou), keeping a continuous online connection to the network of reference stations, maintaining occupation time-limited to 60 epochs, and repeating all the measurements three times. Rapid static positioning was tested, as it compares the true performance of the four GNSS systems receivers. Statistical differences between the receivers were confirmed. The GIS-class receiver achieved an accuracy of 1.38 m and a precision of 1.29 m, while the geodetic class receiver reached 0.74 m and 0.91 m respectively. Even though the research was conducted under the same data capture conditions, the large variability of positioning results were found to be caused by cycle slips and the multipath effect.


MAUSAM ◽  
2021 ◽  
Vol 63 (1) ◽  
pp. 77-88
Author(s):  
J.K.S. YADAV ◽  
R.K. GIRI ◽  
L.R. MEENA

Global Navigation Satellite System (GNSS) is widely used now days in variety of applications. The observation file for the near realtime estimation of Integrated Precipitable Water Vapour (IPWV) received at the ground-based receiver is mixed with ambiguities. Multi-path effects affect the positional accuracy as well as range from satellite to ground based receiver of the system. The designing of the antenna suppress the effect of multi-path, cycle slips, number of observations, and signal strength and data gaps within the data streams. This paper presents the preliminary data quality control findings of the Patch antenna (LeicaX1202), 3D Choke ring antenna (LeicaAR25 GNSS) and Trimble Zephyr antenna (TRM 39105.00). The results shows that choke ring antenna have least gaps in the data, cycle slips and multi-path effects along with improvement in IPWV. The signal strength and the number of observations are more in case of 3D choke ring antenna.


Author(s):  
Aleksandr Pustoshilov

The paper shows a simple method for detecting cycle slips in the carrier-phase measurements (including single frequency measurements) of navigation receivers with highly stable (hydrogen) reference oscillators by using approximation by high-degree polynomials.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2925
Author(s):  
Yanchen Dong ◽  
Peipei Dai ◽  
Sen Wang ◽  
Jianping Xing ◽  
Yulei Xue ◽  
...  

For the current problem of cycle slips in the observation data of the BDS-2 and BDS-3 (Bei Dou Navigation Satellite System), in this paper, BDS B1I and B3I signals are used as research objects to study the detection of cycle slips, and their repair algorithm. The Geometry-free (GF) and Melbourne–Wübeena (MW) combination algorithm are used for the detection of cycle slips. A new method of arc partition is proposed in this work to detect cycle slips as the boundary to delimit two different observation arcs. In this way, the different values of cycle slips can be divided and marked. Moreover, the gross errors can be removed. Finally, the detection of cycle slips and the analysis of all epochs can be completed and repaired. This work also analyzes the dual-frequency data effect of cycle slips on code multipath observation. The results showed that this method greatly improved the speed of detection of cycle slips.


2021 ◽  
Vol 13 (23) ◽  
pp. 4746
Author(s):  
Jiang Guo ◽  
Qiyuan Zhang ◽  
Guangcai Li ◽  
Kunlun Zhang

From network RTK to PPP-RTK, it is highly expected that high-precision positioning within a few minutes can be achieved with a sparse reference network. In this study, we investigate a rapid multi-frequency PPP convergence strategy based on Galileo E1/E5a/E6 and BeiDou-3 B1C/B2a/B3I signals, whose unambiguous wide-lane observables can efficiently assist in speeding up narrow-lane ambiguity resolution. Furthermore, frequency-specific biases existing on the third-frequency observables have been observed to slow down multi-frequency PPP-AR convergence. In this study, we partially mitigated their effects by estimating a second satellite clock for the third frequency of signals. We validated this approach with one month of data collected from 22 stations. On average, it took about 18 min for PPP wide-lane ambiguity resolution (PPP-WAR) to converge, while 32 min were required for ambiguity-float PPP. Compared with dual-frequency PPP-AR, which needed nearly 12 min to converge, multi-frequency PPP-AR required 6 min only. Once there were more than 10 satellites involved in PPP, the convergence could be achieved within 3 min on average. Meanwhile, 81% and 62% of multi-frequency PPP-AR solutions converged successfully within 5 and 1 min, respectively. Finally, we carried out a vehicle-borne experiment to validate this approach in a kinematic environment. Owing to frequent cycle slips during the movement of vehicle, it took 14 min for B1C/B2a/B3I and E1/E5a/E6 PPP-AR to obtain reliable positions, and 19 min for those using the other signal combinations B1C/B2a/B2b and E1/E5a/E5b, owning to higher noise. Overall, these results are promising for achieving high-precision PPP positioning globally within a few minutes if multi-frequency biases can be handled well in the data processing.


2021 ◽  
Vol 13 (20) ◽  
pp. 4131
Author(s):  
Tong Liu ◽  
Zhibin Yu ◽  
Zonghua Ding ◽  
Wenfeng Nie ◽  
Guochang Xu

The disturbances of the ionosphere caused by thunderstorms or lightning events in the troposphere have an impact on global navigation satellite system (GNSS) signals. Gravity waves (GWs) triggered by thunderstorms are one of the main factors that drive short-period Travelling Ionospheric Disturbances (TIDs). At mid-latitudes, ionospheric GWs can be detected by GNSS signals. However, at low latitudes, the multi-variability of the ionosphere leads to difficulties in identifying GWs induced by thunderstorms through GNSS data. Though disturbances of the ionosphere during low-latitude thunderstorms have been investigated, the explicit GW observation by GNSS and its propagation pattern are still unclear. In this paper, GWs with periods from 6 to 20 min are extracted from band-pass filtered GNSS carrier phase observations without cycle-slips, and 0.2–0.8 Total Electron Content Unit (TECU) magnitude perturbations are observed when the trajectories of ionospheric pierce points fall into the perturbed region. The propagation speed of 102.6–141.3 m/s and the direction of the propagation indicate that the GWs are propagating upward from a certain thunderstorm at lower atmosphere. The composite results of disturbance magnitude, period, and propagation velocity indicate that GWs initiated by thunderstorms and propagated from the troposphere to the ionosphere are observed by GNSS for the first time in the low-latitude region.


2021 ◽  
Author(s):  
Charles S. Carrano ◽  
Susan Delay ◽  
Rezy Pradipta ◽  
Keith M. Groves ◽  
Patricia H. Doherty

2021 ◽  
Vol 13 (18) ◽  
pp. 3624
Author(s):  
Janis Balodis ◽  
Madara Normand ◽  
Inese Varna

The main objective of the present study is to perform an analysis of the space weather impact on the Latvian CORS (Continuously Operating GNSS (Global Navigation Satellite System) Stations) GPS (Global Positioning System) observations, in situations of geomagnetic storms, sun flares and extreme TEC (Total Electron Content) and ROTI (Rate of change of TEC index) levels, by analyzing the results, i.e., 90-second kinematic post-processing solutions, obtained using Bernese GNSS Software v5.2. To complete this study, the 90-second kinematic time series of all the Latvian CORS for the period from 2007 to 2017 were analyzed, and a correlation between time series outliers (hereinafter referred to as faults) and extreme space weather events was sought. Over 36 million position determination solutions were examined, 0.6% of the solutions appear to be erroneous, 0.13% of the solutions have errors greater than 1 m, 0.05% have errors greater than 10 m, and 0.01% of the solutions show errors greater than 50 meters. The correlation between faulty results, TEC and ROTI levels and Bernese GNSS Software v5.2 detected cycle slips was computed. This also includes an analysis of fault distribution depending on the geomagnetic latitude as well as faults distribution simultaneously occurring in some stations, etc. This work is the statistical analysis of the Latvian CORS security, mainly focusing on geomagnetic extreme events and ionospheric scintillations in the region of Latvia, with a latitude around 57° N.


Sign in / Sign up

Export Citation Format

Share Document