New architecture and processes for hierarchical composites of aligned carbon nanotubes and continuous carbon fibers

Author(s):  
Roberto Guzman de Villoria ◽  
Brian L. Wardle ◽  
Namiko Yamamoto
2014 ◽  
Vol 802 ◽  
pp. 192-196 ◽  
Author(s):  
Eduardo Saito ◽  
Vagner Eduardo Caetano ◽  
Erica Freire Antunes ◽  
Anderson Oliveira Lobo ◽  
Fernanda Roberto Marciano ◽  
...  

Carbon fibers have been studied for electrochemical applications. Recently, carbon nanotubes present a wide potential uses in electric, mechanic, electrochemical and materials science field. At present study, vertically aligned carbon nanotubes were produced over carbon fibers. The process occurs catalytically by chemical vapor deposition (CVD) using mixture with camphor and ferrocene. After that, the VACNT/CF composite are treated by oxygen plasma for oxygen functionalization. Prior the electrochemical analysis, CNT/Carbon fibers are treated by hydrochloric acid to remove residual catalyst. The electrodes were tested in a usual electrolyte (with H2SO4 0.5M) in a conventional electrochemical cell. The specific capacitance was tested in a separate device. The configuration of carbon fibers and VACNT presents a high potential application for electro analytical application and energy storage.


2003 ◽  
Vol 772 ◽  
Author(s):  
Masakazu Muroyama ◽  
Kazuto Kimura ◽  
Takao Yagi ◽  
Ichiro Saito

AbstractA carbon nanotube triode using Helicon Plasma-enhanced CVD with electroplated NiCo catalyst has been successfully fabricated. Isolated NiCo based metal catalyst was deposited at the bottom of the cathode wells by electroplating methods to control the density of carbon nanotubes and also reduce the activation energy of its growth. Helicon Plasma-enhanced CVD (HPECVD) has been used to deposit nanotubes at 400°C. Vertically aligned carbon nanotubes were then grown selectively on the electroplated Ni catalyst. Field emission measurements were performed with a triode structure. At a cathode to anode gap of 1.1mm, the turn on voltage for the gate was 170V.


2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


2013 ◽  
Vol 3 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Teresa C.O. Marsi ◽  
Marcus A.F. Corat ◽  
Mirian M. Machado ◽  
Evaldo J. Corat ◽  
Fernanda R. Marciano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document