electrical characteristics
Recently Published Documents


TOTAL DOCUMENTS

6485
(FIVE YEARS 1004)

H-INDEX

81
(FIVE YEARS 13)

Author(s):  
Yousif Atalla ◽  
Yasir Hashim ◽  
Abdul Nasir Abd. Ghafar

<span>This paper studies the impact of fin width of channel on temperature and electrical characteristics of fin field-effect transistor (FinFET). The simulation tool multi-gate field effect transistor (MuGFET) has been used to examine the FinFET characteristics. Transfer characteristics with various temperatures and channel fin width (W<sub>F</sub>=5, 10, 20, 40, and 80 nm) are at first simulated in this study. The results show that the increasing of environmental temperature tends to increase threshold voltage, while the subthreshold swing (SS) and drain-induced barrier lowering (DIBL) rise with rising working temperature. Also, the threshold voltage decreases with increasing channel fin width of transistor, while the SS and DIBL increase with increasing channel fin width of transistor, at minimum channel fin width, the SS is very near to the best and ideal then its value grows and going far from the ideal value with increasing channel fin width. So, according to these conditions, the minimum value as possible of fin width is the preferable one for FinFET with better electrical characteristics.</span>


2022 ◽  
Vol 308 ◽  
pp. 118323
Author(s):  
Yunpeng Zhao ◽  
Zhongqi Fan ◽  
Chunwei Bi ◽  
Hao Wang ◽  
Jianchun Mi ◽  
...  

Author(s):  
B. Barıs ◽  
M. Yıldırım ◽  
S. Karadeniz ◽  
A. Karabulut ◽  
A. Kose ◽  
...  

2022 ◽  
Vol 5 (1) ◽  
pp. 01-03
Author(s):  
Sadique Hussain

Nanoparticles (NPs) have attracted a lot of attention in the fields of electronics, biology, and astronautics because of their unique physicochemical and electrical characteristics. NPs are materials with at least one dimension of fewer than 100 nanometres that are commercially manufactured (Bahadar et al., 2016; Vishwakarma et al., 2010). In the medical field, drugs, proteins, DNA, and monoclonal antibodies are all being delivered via NPs(Hussain et al., 2021).


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 81-86
Author(s):  
I. Yu. Lovshenko ◽  
A. Yu. Voronov ◽  
P. S. Roshchenko ◽  
R. E. Ternov ◽  
Ya. D. Galkin ◽  
...  

The results of the simulation the influence of the proton flux on the electrical characteristics of the device structure of dual-channel high electron mobility field effect transistor based on GaAs are presented. The dependences of the drain current ID and cut-off voltage on the fluence value and proton energy, as well as on the ambient temperature are shown.


2022 ◽  
pp. 1-11
Author(s):  
Sandeep Kumar Ojha ◽  
Brijesh Kumar

This research paper discusses the significance development in field-induced contact dual-gate organic light emitting transistor (FIC-DGOLET) device architecture and characteristics. The device behaviour is analyzed and observed significant value of electroluminescent efficiency. The deep investigation of FIC-DGOLET device is discussed in this paper, where impact of varying the various parameters such as thickness of organic semiconductor (OSC) materials from the range of 400 nm to 200 nm at altered value of threshold voltage by using 2D ATLAS simulator. Its theoretical calculation influence over the dynamic control of the device characteristics such as saturated drain current (I ds ), mobility (μ), threshold voltage (V th ) as well as sub threshold swing. The FIC-DGOLET is a dual-gate transistor which also emits light by the operations of two accumulated regions, that are electrons and holes which is not completely overlapped to each other. The leakage current in DG-OLET can be reduced to the extent that 70% than single gate OLET (SG-OLET). The recombination zone mechanism of FIC-DGOLET plays a vital role in its performance, where we get comparable value of electroluminescent efficiency with reported, low value of exciton quenching and current densities. The extracted parameters of DG-OLETs are like drive current of 100A, I on/off 108, threshold voltage V th of 1.3 V at V gs of –3 V and V ds of 0 to –3 V. These extracted performance parameters are very helpful in designing of flexible display applications.


Sign in / Sign up

Export Citation Format

Share Document