scholarly journals Coriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number

Author(s):  
HSIEH-CHEN Hsieh-chen ◽  
Tim Colonius
AIAA Journal ◽  
2016 ◽  
Vol 54 (1) ◽  
pp. 216-226 ◽  
Author(s):  
Hsieh-Chen Tsai ◽  
Tim Colonius

AIAA Journal ◽  
2014 ◽  
Vol 52 (2) ◽  
pp. 456-462 ◽  
Author(s):  
David Greenblatt ◽  
Amos Ben-Harav ◽  
Hanns Mueller-Vahl

2015 ◽  
Vol 57 ◽  
pp. 144-158 ◽  
Author(s):  
K.M. Almohammadi ◽  
D.B. Ingham ◽  
L. Ma ◽  
M. Pourkashanian

2022 ◽  
Author(s):  
David Bensason ◽  
Sébastien Le Fouest ◽  
Anna M. Young ◽  
Karen Mulleners

2021 ◽  
Vol 897 (1) ◽  
pp. 012001
Author(s):  
Oleg Goman ◽  
Andrii Dreus ◽  
Anton Rozhkevych ◽  
Krystyna Heti

Abstract Until recently, vertical-axis wind turbines are less extensively developed in wind energetics. At the same time, there are a number of advantages in turbines of such type like their independence from the change of wind direction, lower levels of aerodynamic and infrasound noises, higher structural reliability (compared to horizontal engines), etc. With these advantages, vertical-axis wind turbines demonstrate promising capacities. Inter alia, the productiveness of such turbines can be refined through the aerodynamic improvement of the structure and comprehensive optimization of the rotor geometry. The main purpose of the presented paper is to aerodynamically improve vertical wind turbine in order to increase the efficiency of wind energy conversion into electricity. Within the framework of the classical theory of impulses, this article presents a study of the effect of variation in Reynolds number on the general energy characteristics of a vertical-axis wind turbine with two blades. The integral approach makes it possible to use a single-disk impulse model to determine the main specific indicators of the system. The power factor was calculated based on the obtained value of the shaft torque factor, which in turn was determined by numerically integrating the total torque generated by the wind turbine. To calculate the test problem, we used the classic NACA airfoils: 0012, 0015, 0018 and 0021. The proposed calculation algorithm makes it possible not to indicate the Reynolds number and corresponding aerodynamic coefficients at the beginning of the calculation, but to recalculate it depending on the relative speed, position of the airfoil and the linear speed of the airfoil around the circumference. Proposed modern design techniques can be helpful for optimization of vertical wind turbines.


2020 ◽  
Vol 23 (4) ◽  
pp. 771-780
Author(s):  
Anh Ngoc VU ◽  
Ngoc Son Pham

This study describes an effectively analytic methodology to investigate the aerodynamic performance of H vertical axis wind turbine (H-VAWT). An in-house code based on double multiple stream tube theory (DMST) coupled with dynamic stall and wake correction is implemented to estimate the power coefficient. Design optimization of airfoil shape is conducted to study the influences of the dynamic stall and turbulent wakes. Airfoil shape is universally investigated by using the Class/Shape function transformation method. The airfoil study shows that the upper curve tends to be less convex than the lower curve in order to extract more energy of the wind upstream and generate less drag of the blade downstream. The optimal results show that the power coefficient increases by 6.5% with the new airfoil shape.


2016 ◽  
Author(s):  
Akshay Basavaraj

In regions of low wind speed, overcoming the starting torque of a Vertical Axis Wind Turbine (VAWT) becomes a challenge aspect. In order to overcome this adversity, careful selection of airfoils for the turbine blades becomes a priority. This paper tries to address the issue utilizing an approach wherein by observing the effect of merging two airfoils. Two airfoils which are of varying camber and thickness are merged and their aerodynamic characteristics are evaluated using the software XFOIL 6.96. For a variation in angle of attack from 0 to 90°, aerodynamic analysis is done in order to observe the behavior of one quarter of the entire VAWT cycle. An objective function is developed so as to observe the maximum possible torque generated by these airfoils at Reynolds number varying from 15,000–120,000. Due to change in the value of CL observed at Low Reynolds Number using commercial CFD softwares, multiple objective functions are utilized to observe the behavior over a range of Reynolds number. An experimental co-relation between the cut-in velocity and the lift-coefficient of the airfoils is developed in order to predict the cut-in velocity of the interpolated airfoils. The airfoils used for this paper are NACA 0012, NACA 0018, FX 66 S196, Clark Y (smooth), PT 40, SD 7032, A 18, SD 7080, SG 6043 and SG 6040.


PAMM ◽  
2013 ◽  
Vol 13 (1) ◽  
pp. 295-296
Author(s):  
Florin Frunzulica ◽  
Horia Dumitrescu ◽  
Alexandru Dumitrache

Sign in / Sign up

Export Citation Format

Share Document