A Reduced-Complexity Investigation of Blunt Leading-Edge Separation Motivated by UCAV Aerodynamics (Invited)

Author(s):  
James M. Luckring ◽  
Okko J. Boelens
2019 ◽  
Author(s):  
Laurent M. Le Page ◽  
Matthew Barrett ◽  
Sean O’Byrne ◽  
Sudhir L. Gai

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


1960 ◽  
Vol 64 (596) ◽  
pp. 491-493 ◽  
Author(s):  
B. J. Elle

In a recent article, H. Werlé, has described how the free spiral vortices on delta wings with leading edge separation suddenly expand if the incidence is increased beyond a critical value. His description conforms to a great extent with the results, arrived at during an English investigation of the same phenomenon (called the vortex breakdown), but the interpretations of the observations, suggested by the two sources, are different. Against this background it is felt that some further comments and some pertinent high speed observations, may be of interest.


Sign in / Sign up

Export Citation Format

Share Document