scholarly journals Dynamic CFD Simulations of the MEADS II Ballistic Range Test Model

Author(s):  
Eric Stern ◽  
Alan Schwing ◽  
Joseph M. Brock ◽  
Mark Schoenenberger
Author(s):  
Joon Young Yoon ◽  
Seong Hwan Kim ◽  
Gwon Cheol Yu ◽  
Jung Kwan Seo ◽  
Bong Ju Kim ◽  
...  

The aim of this paper is to examine the effect of wind on the thermal diffusion characteristics of floating production storage and offloading (FSPO) topside models subject to fire. It is motivated by the need to identify the fire loads on FPSO topsides, taking into account the effects of wind speed and direction. The results of an experimental and numerical study undertaken for these purposes are reported here. This paper is part of Phase II of the joint industry project on explosion and fire engineering of FPSOs (EFEF JIP) [1]. An experiment was performed on a 1/14-scale FPSO topside model using a wind tunnel test facility. The locations of the heat source of the fire were varied, as were the speed and direction of the wind, and the temperature distribution was measured. Computational fluid dynamics (CFD) simulations using the ANSYS CFX program were performed on the test model, with the results obtained compared with the experimental results. It is concluded that wind has a significant effect on the thermal diffusion characteristics of the test model and that the CFD simulations are in good agreement with the experimental results. The insights developed in this study will be very useful for the fire engineering of FPSO topsides.


Author(s):  
Kshitij Vadake ◽  
Jie Cui

Experimental Fluid Dynamics (EFD) and Computational Fluid Dynamics (CFD) have been instrumental in Fluid Mechanics to help solve scientific and engineering problems. This research attempts to use both techniques to perform a parametric study of turbulence flow around airfoil ClarkY-14 at various velocity and angle of attack (AoA). Clark Y-14 airfoil was designed in the 1920’s. It demonstrated good overall performance at low and moderate Reynolds numbers. With the progress in the aviation field, its performance was sub-optimal for newer aircraft designs. However, with the advent of RC airplanes and model aircrafts, there is a renewed interest in this airfoil. Various research projects have been conducted using this airfoil, but there hasn’t been a combined EFD and CFD study of the performance characteristics of the airfoil itself, which still finds real world applications today. One important aspect of this research included the investigation of the effects of a Force Measurement Device/Sensor, which is typically used in scaled/full-size wind tunnels to mount the test model as well as measure the forces/moments acting on it during the testing. The presence of such a device could affect the quality of the data obtained from the wind tunnel testing when compared to a real world application scenario where the aforementioned device may not be present. To the best of the author’s knowledge, no detailed study has been published on the effects of such devices. In this study, the results with and without the measuring device were generated by using CFD simulations. The results were then compared to see to what extent the inclusion of these devices will affect the results. The methodology used for this research was experimental as well as computational. In the present research, a commercially available CFD software STAR-CCM+ was employed to simulate the flows around airfoil Clark Y-14. The experimental data was obtained from wind tunnel tests using AEROLAB Educational Wind Tunnel (EWT) and compared with the simulation data from the CFD. The two data sets were in good agreement. Both experimental and simulation results were used to understand the effects of the measurement device/sensor used in the scaled wind tunnel on the lift and drag coefficients of the airfoil. Two separate CFD simulation setups were designed to model the presence and absence of the measurement device/sensor. These setups replicated the wind tunnel setup. The airfoil was tested and simulated at different speeds as well as different AoA. The comparative study gave a useful insight on the accuracy of the CFD simulations in relation to the actual testing. The analysis of results concluded that the force measurement device/sensor had insignificant effects on the accuracy and quality of data collected through wind tunnel testing.


Author(s):  
Chong Whang ◽  
Warren Chilton ◽  
Philemon Chan

A computational fluid dynamics (CFD) study was carried out with data comparison to provide guidance for the control of open shock tube wave expansion to simulate field blast loadings for the conduct of biomechanical blast overpressure tests against surrogate test models. The technique involves the addition of a diffuser to the shock tube to prevent overexpansion before the shock wave impacts the test model. Mild traumatic brain injury (mTBI) has been identified as the signature injury for the conflicts in Iraq and Afghanistan, and blast overpressure from improvised explosive devices (IEDs) has been hypothesized as a significant mTBI risk factor. Research in the understanding of the mechanism of blast induced mTBI has been very active, which requires blast testing using animal and physical models. Full scale field blast testing is expensive. The use of shock tubes is clearly a viable cost effective laboratory method with many advantages. CFD simulations with data comparison show that without a diffuser, the shock wave exiting the tube tends to over expand producing an incident waveform with a short positive duration followed by a significant negative phase that is different from a Friedlander wave. However, the overexpansion effects can be mitigated by a diffuser. Shock tube tests also support the simulation results in which a diffuser improves the waveform from the shock tube. CFD simulations were validated by shock tube tests.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Haogong Wei ◽  
Xin Li ◽  
Jie Huang ◽  
Qi Li ◽  
Wei Rao

A typical blunt body such as Tianwen-1 Mars entry capsule suffers dynamic instability in supersonic regime. To investigate the unstable Mach range of flight and to confirm the design of aerodynamic shape and mass properties, a ballistic range test was carried out aiming at capturing supersonic dynamic characteristics of Tianwen-1. Aerodynamic coefficients of free-flight scaled models were derived by modified linear regression method based on position and attitude data, while the dynamic coefficients were established under the assumption of small angle linearization. The static moment coefficients and dynamic derivatives were identified thereafter. Results show that models in untrimmed configuration are dynamically unstable at certain Mach numbers, whereas models in trimmed configuration are dynamically stable at other Mach numbers tested. Both trimmed and untrimmed configurations are statically stable in all testing cases.


Nature ◽  
2001 ◽  
Author(s):  
Philip Ball
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
D. Sartika ◽  
R. Palupi ◽  
A. Fariani
Keyword(s):  

Tujuan penelitian ini adalah untuk mengetahui performa ayam ras petelur fase produksi I yang diberi tepung limbah udang olahan (TLUO). Penelitian ini menggunakan 40 ekor ayam ras petelur tipe medium strain Lohmann umur 5 bulan yang diproduksi oleh PT. Comfeed Multi Breeder. Rancangan yang digunakan adalah rancangan acak lengkap (RAL) yang terdiri atas 4 perlakuan dan 5 ulangan. Ransum perlakuan yang digunakan adalah ransum tanpa penggunaan TLUO (R0); penggunaan TLUO 6,6% (R1); penggunaan TLUO 13% (R2); dan penggunaan TLUO 20% (R3) dalam ransum. Parameter yang diamati meliputi konsumsi ransum, berat telur, produksi telur, dan konversi ransum. Data diolah dengan analisis keragaman dan dilakukan uji lanjut Duncan’s Multiple Range Test (DMRT) jika terdapat perbedaan yang nyata antar perlakuan. Hasil penelitian menunjukkan bahwa tepung limbah udang olahan dalam ransum ayam ras petelur strain Lohmann fase produksi I berpengaruh tidak nyata (P>0,05) terhadap konsumsi ransum, berat telur, produksi telur, dan konversi ransum.


Sign in / Sign up

Export Citation Format

Share Document