scholarly journals Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design

Author(s):  
Wu Li ◽  
Jay Robinson
2021 ◽  
Vol 3 (2) ◽  
pp. 75-84
Author(s):  
Smitha T. V. ◽  
Madhura S ◽  
Sindhu R ◽  
Brundha R

In this paper our aim is to provide a survey of mesh generation techniques for some Engineering applications. Mesh generation is a very important requirement to solve any problem by very popular numerical method known as Finite element method (FEM). It has several applications in various fields. One such technique is Automated generation of finite element meshes for aircraft conceptual design. It’s an approach for automated generation of fully connected finite element meshes for all internal structural components, given wing body, geometry model, controlled by a few conceptual level structural layout parameters. Another application where it is used is in the study of biomolecules to generate volumetric mesh of a biomolecule of any size and shape based on its atomic structure. These methods are proved to be a faster method due to the usage of computing techniques. Mesh generator is also used for creating finite element surface and volumetric mesh from 3D binary and gray scale medical images. Some of the applications include volumetric images, surface mesh extraction, surface mesh repairing and many more. It is of great importance in understanding the human brain which is a complex subject. Though 3D visualization is a useful tool available, yet it is inadequate due to its challenging computational problem. This paper also includes the survey on latest tools used for these applications which overcomes many problems associated with the conventional approaches.


2017 ◽  
Vol 107 (09) ◽  
pp. 640-646
Author(s):  
J. Jaensch ◽  
A. Neyrinck ◽  
A. Lechler ◽  
A. Prof. Verl

Maschinen und besonders Anlagen werden meist in individuellen Prozessen entwickelt. Bereits in der Angebots- und Konzeptionsphase werden im direkten Austausch mit dem Auftraggeber unterschiedliche Varianten diskutiert und iteriert. Zur Bewertung der Varianten sind neben den Anschaffungskosten unter anderem laufzeitabhängige Größen wie Taktzeiten und Energieeffizienz zu untersuchen. Der Beitrag stellt einen Ansatz zur simulationsbasierten Untersuchung für die automatisierte Variantengenerierung von Anlagen vor.   The development of machines or plants is a very individual process. Within the conceptual design phase, many different variants have to be discussed with customers and adapted to their needs. For a decent evaluation of the different variants, many parameters beyond static values such as costs are important. Term-dependent values like cycle times and energy efficiency also have to be investigated. This paper presents a method for the automated generation of plant variants based on simulation.


Sign in / Sign up

Export Citation Format

Share Document