Near-Field Acoustic Radiations in a Two-Stream Supersonic Jet Flow

Author(s):  
Pinqing Kan ◽  
Christopher J. Ruscher ◽  
Jacques Lewalle ◽  
Mark N. Glauser ◽  
Sivaram P. Gogineni ◽  
...  
Keyword(s):  
2020 ◽  
Vol 142 (11) ◽  
Author(s):  
X. F. Wei ◽  
L. P. Chua ◽  
Z. B. Lu ◽  
H. D. Lim ◽  
R. Mariani ◽  
...  

Abstract Detailed near- and far-field acoustic measurements were conducted for two circular stepped nozzles with 30 deg and 60 deg design inclinations at over- and perfectly-expanded supersonic jet flow conditions and compared to those for a circular nonstepped nozzle. Far-field acoustic results show that stepped nozzles play an insignificant role in altering noise emissions at perfectly expanded condition. At an over-expanded condition, however, the longer stepped nozzle produces significant noise reductions at the sideline and upstream quadrants, while the shorter stepped nozzle does not. Noise spectra analysis and Schlieren visualizations show that noise reduction can be primarily attributed to mitigations in the broadband shock-associated noise (BSAN), due to the ability of the longer stepped nozzle in suppressing shock strengths at downstream region. Near-field acoustic measurements reveal that the source region, as well as the intensity of turbulent and shock noises, are highly sensitive to the stepped nozzle configuration. Furthermore, BSAN seems to be eliminated by the longer stepped nozzle in near-field region due to the shock structure modifications.


2015 ◽  
Vol 785 ◽  
pp. 152-188 ◽  
Author(s):  
Xiaochuan Chai ◽  
Prahladh S. Iyer ◽  
Krishnan Mahesh

Large-eddy simulation (LES) and dynamic mode decomposition (DMD) are used to study an underexpanded sonic jet injected into a supersonic crossflow and an overexpanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on the experiments of Santiago & Dutton (J. Propul. Power, vol. 13 (2), 1997, pp. 264–273) and Beresh et al. (AIAA J., vol. 43, 2005a, pp. 379–389), respectively. The simulations successfully reproduce experimentally observed shock systems and vortical structures. The time averaged flow fields are compared to the experimental results, and good agreement is observed. The behaviour of the flow is discussed, and the similarities and differences between the two regimes are studied. The trajectory of the transverse jet is investigated. A modification to Schetz et al.’s theory is proposed (Schetz & Billig, J. Spacecr. Rockets, vol. 3, 1996, pp. 1658–1665), which yields good prediction of the jet trajectories in the current simulations in the near field. Point spectra taken at various locations in the flowfield indicate a global oscillation for the sonic jet flow, wherein different regions in the flow oscillate with a frequency of $St=fD/u_{\infty }=0.3$. For supersonic jet flow, no such global frequency is observed. Dynamic mode decomposition of the three-dimensional pressure field obtained from LES is performed and shows the same behaviour. The DMD results indicate that the $St=0.3$ mode is dominant between the upstream barrel shock and the bow shock for the sonic jet, while the roll up of the upstream shear layer is dominant for the supersonic jet.


2021 ◽  
Vol 20 (1-2) ◽  
pp. 4-34
Author(s):  
Reda R Mankbadi ◽  
Saman Salehian

In this work we propose replacing the conventional flat-surface airframe that shields the engine by a wavy surface. The basic principle is to design a wavy pattern to reflect the incoming near-field flow and acoustic perturbations into waves of a particular dominant frequency. The reflected waves will then excite the corresponding frequency of the large-scale structure in the initial region of the jet’s shear layer. By designing the frequency of the reflected waves to be the harmonic of the fundamental frequency that corresponds to the radiated peak noise, the two frequency-modes interact nonlinearly. With the appropriate phase difference, the harmonic dampens the fundamental as it extracts energy from it to amplify. The outcome is a reduction in the peak noise. To evaluate this concept, we conducted Detached Eddy Simulations for a rectangular supersonic jet with and without the wavy shield and verified our numerical results with experimental data for a free jet, as well as, for a jet with an adjacent flat surface. Results show that the proposed wavy surface reduces the jet noise as compared to that of the corresponding flat surface by as much as 4 dB.


2021 ◽  
Vol 32 (7) ◽  
Author(s):  
Bu-Er Wang ◽  
Shi-Chao Zhang ◽  
Zhen Wang ◽  
Jiang-Tao Jia ◽  
Zhi-Bin Chen

Author(s):  
Raymond S. Castner ◽  
Khairul Q. Zaman ◽  
Amy Fagan ◽  
Christopher Heath

1985 ◽  
Vol 13 (4) ◽  
pp. 461-472 ◽  
Author(s):  
Rainer Walther ◽  
Johannes Algermissen

AIAA Journal ◽  
2009 ◽  
Vol 47 (8) ◽  
pp. 1849-1865 ◽  
Author(s):  
Junhui Liu ◽  
K. Kailasanath ◽  
Ravi Ramamurti ◽  
David Munday ◽  
Ephraim Gutmark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document