Large-Eddy Simulation of a Compressible Mixing Layer and the Significance of Inflow Turbulence

Author(s):  
Mina R. Mankbadi ◽  
James R. DeBonis ◽  
Nicholas J. Georgiadis
2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yousef Kanani ◽  
Sumanta Acharya ◽  
Forrest Ames

Abstract High Reynolds flow over a nozzle guide-vane with elevated inflow turbulence was simulated using wall-resolved large eddy simulation (LES). The simulations were undertaken at an exit Reynolds number of 0.5 × 106 and inflow turbulence levels of 0.7% and 7.9% and for uniform heat-flux boundary conditions corresponding to the measurements of Varty and Ames (2016, “Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels,” ASME Paper No. IMECE2016-67029). The predicted heat transfer distribution over the vane is in excellent agreement with measurements. At higher freestream turbulence, the simulations accurately capture the laminar heat transfer augmentation on the pressure surface and the transition to turbulence on the suction surface. The bypass transition on the suction surface is preceded by boundary layer streaks formed under the external forcing of freestream disturbances which breakdown to turbulence through inner-mode secondary instabilities. Underneath the locally formed turbulent spot, heat transfer coefficient spikes and generally follows the same pattern as the turbulent spot. The details of the flow and temperature fields on the suction side are characterized, and first- and second-order statistics are documented. The turbulent Prandtl number in the boundary layer is generally in the range of 0.7–1, but decays rapidly near the wall.


2011 ◽  
Vol 347-353 ◽  
pp. 922-926
Author(s):  
Jin Liang Gu ◽  
Huan Hao Zhang ◽  
Zhi Hua Chen ◽  
Xiao Hai Jiang

Large eddy simulation (LES) has been used to simulate both non-reacting and reacting supersonic planar mixing layers at convective Mach number Mc=0.3. The different eddy characteristics of two cases have been visualized and discussed based on our calculated results, and the differences of mixing layer structures have also been shown, which can provide some important guide for future relative engineering design.


Sign in / Sign up

Export Citation Format

Share Document